Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Viswanathan, Gandhimohan"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Artigo
    Brain complex network analysis by means of resting state fMRI and graph analysis: Will it be helpful in clinical epilepsy?
    (2014) Onias, Heloisa; Viol, Aline; Palhano-Fontes, Fernanda; Andrade, Katia C.; Sturzbecher, Marcio; Viswanathan, Gandhimohan; Araújo, Dráulio Barros de
    Functional magnetic resonance imaging (fMRI) has just completed 20 years of existence. It currently serves as a research tool in a broad range of human brain studies in normal and pathological conditions, as is the case of epilepsy. To date, most fMRI studies aimed at characterizing brain activity in response to various active paradigms. More recently, a number of strategies have been used to characterize the low-frequency oscillations of the ongoing fMRI signals when individuals are at rest. These datasets have been largely analyzed in the context of functional connectivity, which inspects the covariance of fMRI signals from different areas of the brain. In addition, resting state fMRI is progressively being used to evaluate complex network features of the brain. These strategies have been applied to a number of different problems in neuroscience, which include diseases such as Alzheimer's, schizophrenia, and epilepsy. Hence, we herein aimed at introducing the subject of complex network and how to use it for the analysis of fMRI data. This appears to be a promising strategy to be used in clinical epilepsy. Therefore, we also review the recent literature that has applied these ideas to the analysis of fMRI data in patients with epilepsy.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM