Navegando por Autor "Xavier, Marcella Gautê Cavalcante"
Agora exibindo 1 - 3 de 3
- Resultados por página
- Opções de Ordenação
Artigo Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn-Bi lead-free solder alloys(Elsevier, 2017-09-29) Silva, Bismarck Luiz; Xavier, Marcella Gautê Cavalcante; Garcia, Amauri; Spinelli, José EduardoOver the past few years Sn-based solders containing third and fourth elements have become of great interest to try and improve the consistency of solders during application. In most reported cases this involved the addition of either Ni in Sn-Cu or Ag in Sn-Bi solder alloys. Still there is a lack of research showing how the combination of third element additions and varying cooling rates affect the mechanical properties of Sn-Bi-X solder alloys. As such the present investigation examines the effects of minor additions of Ag and Cu on a Sn-34 wt%Bi solder alloys produced by directional solidification. Directional solidification was used as the transient regime attained during directional solidification in a water-cooled mold may allow for similar cooling rates to those found in industrial reflow soldering operations. Microstructural analysis on the Sn-Bi-X alloys was conducted using eutectic spacing (λE), Bi precipitates spacing (λp) and the secondary dendritic spacing (λ2) measurements. These measurements represented the complex eutectic growth, the solid-state precipitation of Bi within the β-Sn phase and the length-scale of the Sn-rich dendritic array respectively. In conjunction with these measurements the evolution of tensile strength and ductility as a function of λ2 was examined. Considering the Sn-34 wt%Bi, Sn-34 wt%Bi-0.1 wt%Cu, Sn-34 wt%Bi-0.7 wt%Cu and Sn-33 wt%Bi-2 wt%Ag alloys, it was found that the modified alloys containing 0.7 wt%Cu and 2.0 wt%Ag showed lower tensile properties and lower ductility. In contrast, the addition of 0.1 wt%Cu increased the ductility for λ2 < 14 µm while preserving the tensile strength, representing the best alternative of all alloys examinedArtigo Directional solidification of a Sn-0.2Ni solder alloy in water-cooled copper and steel molds: related effects on the matrix micromorphology, nature of intermetallics and tensile properties(Elsevier, 2017-11-05) Xavier, Marcella Gautê Cavalcante; Cruz, Clarissa Barros da; Kakitani, Rafael; Silva, Bismarck Luiz; Garcia, Amauri; Cheung, Noé; Spinelli, José EduardoThe present investigation is focused on, firstly, performing transient directional solidification experiments with a Sn-0.2 wt.% Ni solder alloy using two different substrates as mold sheets separating the alloy casting from the cooling fluid: copper and low carbon steel. Secondly, the examination of the obtained microstructures is carried out highlighting not only the micromorphology aspects of the formed β-Sn phase but also the nature and the shape of the intermetallic compounds (IMCs) developed. The purpose of this research work is to verify the influences that different substrate materials may have on the alloy solidification kinetics, resultant microstructures and tensile properties of the Sn-0.2 wt.%Ni solder. The microstructure characteristics may be correlated with thermal solidification parameters such as the eutectic cooling rate and eutectic growth rate along with a qualitative evaluation of Fe and Cu dissolutions into the alloy. The results display that the dissolution of Cu into the Sn-Ni alloy provided the prevalent growth of the (Cu,Ni)6Sn5 fiber-like eutectic phase along the length of the casting. Other than, the Cu-containing Sn-Ni alloy allowed the growth of high-velocity β-Sn cells only for very high cooling rates, associated with positions closer to the bottom of the alloy casting. Farther positions are characterized by a complex growth of β-Sn dendrites. On the other hand, for the alloy solidified against the steel mold, a predominance of the non-equilibrium NiSn4 eutectic phase with plate-like shape has been identified by SEM/EDS and XRD. In this case, the predominant growth of β-Sn cells associated with the presence of the plates of the NiSn4 IMC allowed lower tensile strength and higher ductility to be attainedArtigo Transient unidirectional solidification, microstructure and intermetallics in Sn-Ni Alloys(ABM, ABC, ABPol, 2018-04-12) Cruz, Clarissa Barros da; Kakitani, Rafael; Xavier, Marcella Gautê Cavalcante; Silva, Bismarck Luiz; Garcia, Amauri; Cheung, Noé; Spinelli, José EduardoThe present research work examines the microstructural arrangements formed during the transient solidification of eutectic Sn-0.2wt.%Ni and hypereutectic Sn-0.5wt.%Ni alloys. Also, it examines their respective correlations with solidification thermal parameters: eutectic growth rate (VE) and eutectic cooling rate (ṪE); length scales of matrix and eutectic phases: microstructural spacings and the corresponding tensile properties: ductility and strength. Both alloys were directionally solidified upwards under unsteady-state regime, and characterized by optical and scanning electron microscopy. Concerning the hypereutectic Sn-0.5wt.%Ni, the increase in Ni content is shown to influence both thermal behavior and cellular spacing (λC). The NiSn4 intermetallics is present in the eutectic mixture of both alloys, whilst in the Sn-0.5wt.%Ni alloy the primary phase has been identified by SEM-EDS as the Ni3Sn4 intermetallics. A β-Sn morphological cellular/dendritic transition occurs in the 0.2wt.%Ni eutectic alloy for ṪE> 1.2K/s. Despite that, regular cells in the hypereutectic alloy (0.5wt.%Ni) turns into plate-like cells for ṪE> 1.4K/s. If considered a reference cellular spacing about 20μm (i.e.,λ(c-1/2=0.22), the samples associated with the Sn-0.5wt.%Ni alloy are shown to be associated with higher tensile strengths, but much lower ductility as compared with the corresponding results of the eutectic alloy