Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/handle/123456789/15220
Title: Modelagem e controle de um microveículo aéreo: uma aplicação de estabilidade robusta com a técnica backstepping em uma estrutura hexarrotor
Authors: Sanca, Armando Sanca
Keywords: Hexarrotor. Modelagem Dinâmica. Controle robusto por backstepping. Estimação de atitude por FKE;Hexarotor. Dynamic modeling. Robust backstepping control. EKF Attitude Estimation
Issue Date: 1-Feb-2013
Publisher: Universidade Federal do Rio Grande do Norte
Citation: SANCA, Armando Sanca. Modelagem e controle de um microveículo aéreo: uma aplicação de estabilidade robusta com a técnica backstepping em uma estrutura hexarrotor. 2013. 135 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
Portuguese Abstract: Nesta Tese, são apresentados os desenvolvimentos da modelagem dinâmica de um veículo aéreo não tripulado multirrotor com capacidade de decolagem e pouso vertical, considerando as não linearidades de entrada e o desenvolvimento de um controlador robusto por backstepping. A formulação do modelo dinâmico é expressa usando-se as leis de Newton-Euler, visando à obtenção de uma melhor representação matemática do sistema mecânico para a análise e projeto das leis de controle, não apenas quando está pairando, como também de decolagem, de pouso, ou de voo executando uma tarefa. As não linearidades de entrada são a zona morta e a saturação, onde o efeito gravitacional e as inerentes restrições físicas dos rotores são relacionadas e abordadas. O microveículo experimental está equipado com uma unidade de medida inercial e um sonar, que devidamente instrumentada fornece as medidas da atitude e altitude. Foi desenvolvido um estimador em tempo real para atitude usando quatérnios e baseado em filtro de Kalman estendido. Para a formulação robusta do controlador, os sensores foram modelados como o valor real, que é o valor ideal com a adição de um viés e mais um ruído branco desconhecidos e limitados. Os controladores de atitude e altitude foram derivados usando-se o critério globalmente uniformemente praticamente assintoticamente estável para sistemas reais, que permanece globalmente uniformemente assintoticamente estável se e somente se suas soluções são globalmente uniformemente limitadas, lidando com a convergência e estabilidade dentro de uma região com raio não nula, levando em consideração algumas suposições como as incertezas nas medições. A técnica de análise de Lyapunov foi usada para: provar a estabilidade do sistema em malha fechada; calcular os limites dos ganhos de controle, e, obter a garantia limitada pretendida sobre o erro de rastreamento da dinâmica de atitude na presença de distúrbios nas mediçõoes. As leis de controle foram testadas em simulações numéricas e em um hexarrotor experimental, desenvolvido no Laboratório de Robótica da Universidade Federal do Rio Grande do Norte
Abstract: In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
URI: https://repositorio.ufrn.br/jspui/handle/123456789/15220
Appears in Collections:PPGEE - Doutorado em Engenharia Elétrica e de Computação

Files in This Item:
File Description SizeFormat 
ArmandoSS_TESE.pdf2,06 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.