Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/handle/123456789/15354
Title: Contribuições para a análise de sinais neuronais e biomédicos
Authors: Santos, Vítor Lopes dos
Keywords: neuroengenharia, fotoestimulação neural, postulado de Hebb, assembleias neurais, Lei do semicírculo de Wigner, Teoria da Informação, divergência de Kullback-Leibler
Issue Date: 3-Mar-2011
Publisher: Universidade Federal do Rio Grande do Norte
Citation: SANTOS, Vítor Lopes dos. Contribuições para a análise de sinais neuronais e biomédicos. 2011. 48 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
Portuguese Abstract: Following the new tendency of interdisciplinarity of modern science, a new field called neuroengineering has come to light in the last decades. After 2000, scientific journals and conferences all around the world have been created on this theme. The present work comprises three different subareas related to neuroengineering and electrical engineering: neural stimulation; theoretical and computational neuroscience; and neuronal signal processing; as well as biomedical engineering. The research can be divided in three parts: (i) A new method of neuronal photostimulation was developed based on the use of caged compounds. Using the inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to block neuronal population activity using a laser pulse. The obtained results were evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A mathematical method was created to identify neuronal assemblies. Neuronal assemblies were proposed as the basis of learning by Donald Hebb remain the most accepted theory for neuronal representation of external stimuli. Using the Marcenko-Pastur law of eigenvalue distribution it was possible to detect neuronal assemblies and to compute their activity with high temporal resolution. The application of the method in real electrophysiological data revealed that neurons from the neocortex and hippocampus can be part of the same assembly, and that neurons can participate in multiple assemblies. (iii) A new method of automatic classification of heart beats was developed, which does not rely on a data base for training and is not specialized in specific pathologies. The method is based on Wavelet decomposition and normality measures of random variables. Throughout, the results presented in the three fields of knowledge represent qualification in neural and biomedical engineering
Abstract: Following the new tendency of interdisciplinarity of modern science, a new field called neuroengineering has come to light in the last decades. After 2000, scientific journals and conferences all around the world have been created on this theme. The present work comprises three different subareas related to neuroengineering and electrical engineering: neural stimulation; theoretical and computational neuroscience; and neuronal signal processing; as well as biomedical engineering. The research can be divided in three parts: (i) A new method of neuronal photostimulation was developed based on the use of caged compounds. Using the inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to block neuronal population activity using a laser pulse. The obtained results were evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A mathematical method was created to identify neuronal assemblies. Neuronal assemblies were proposed as the basis of learning by Donald Hebb remain the most accepted theory for neuronal representation of external stimuli. Using the Marcenko-Pastur law of eigenvalue distribution it was possible to detect neuronal assemblies and to compute their activity with high temporal resolution. The application of the method in real electrophysiological data revealed that neurons from the neocortex and hippocampus can be part of the same assembly, and that neurons can participate in multiple assemblies. (iii) A new method of automatic classification of heart beats was developed, which does not rely on a data base for training and is not specialized in specific pathologies. The method is based on Wavelet decomposition and normality measures of random variables. Throughout, the results presented in the three fields of knowledge represent qualification in neural and biomedical engineering
URI: https://repositorio.ufrn.br/jspui/handle/123456789/15354
Appears in Collections:PPGEE - Mestrado em Engenharia Elétrica e de Computação

Files in This Item:
File Description SizeFormat 
VitorLS_DISSERT.pdf1,79 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.