Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/handle/123456789/16635
Title: Efeitos da interação dipolar na nucleação de vórtices em nano-cilindros ferromagnéticos
Authors: Silva, Maria das Graças Dias da
Keywords: Vórtice magnético. Campo dipolar. Campo de anisotropia. Estados magnéticos remanentes. Histerese térmica. Campo de troca de interface;Magnetic vortex. Dipolar field. Anisotropy field. Magnetic states. Thermal hysteresis. Interface exchange field
Issue Date: 28-Jul-2014
Publisher: Universidade Federal do Rio Grande do Norte
Citation: SILVA, Maria das Graças Dias da. Efeitos da interação dipolar na nucleação de vórtices em nano-cilindros magnéticos. 2014. 150 f. Tese (Doutorado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
Portuguese Abstract: Os efeitos de confinamento e o forte acoplamento dipolar na estrutura de vórtices de nano-elementos ferromagnéticos é um tema de interesse atual, não apenas pelo valor puramente acadêmico, mas também pelo impacto em grande número de dispositivos da área de spintrônica. Muitos dispositivos, como nano-osciladores para transmissão de dados sem fio, podem tirar grande proveito da possibilidade de controlar o padrão magnético do núcleo do vórtice magnético. Relatamos um estudo teórico da nucleação de vórtices em um par de cilindros coaxiais de ferro e de Permalloy, com diâmetros desde 21nm até 150nm e espessuras de 12nm e de 21nm, separados por uma fina camada não-magnética. Cilindros isolados de ferro e Permalloy com espessura de 12nm não permitem a formação de vórtices, enquanto que cilindros de espessura de 21nm possuem vórtices quando isolados em remanência. Nossos resultados indicam que é possível controlar a estrutura magnética dos vórtices, bem como a chiralidade e polaridade relativa dos dois vórtices, pela escolha apropriada dos valores dos diâmetros e da separação dos dois cilindros ferromagnéticos. Dependendo do valor da separação entre os cilindros, a interação dipolar pode induzir a formação de vórtices em pares de cilindros de espessura de 12nm e inibir a formação de vórtices em pares de cilindros de 21nm de espessura. Além disso, mostramos que a rota de preparação do estado magnético em campo nulo, pode ser usada para determinar a chiralidade e polaridade relativa dos dois vórtices. Por exemplo: partindo da saturação da magnetização de um par de cilindros de ferro com diâmetro de 81nm e espessura de 21nm, na direção do eixo fácil da anisotropia uniaxial do ferro, resulta um par de vórtices com núcleo de 36nm, mesma chiralidade e mesma polaridade. Partindo do estado saturado em uma direção no plano e perpendicular ao eixo de anisotropia uniaxial, resulta um par de vórtices com núcleo de 30nm de diâmetro, com chiralidade e polaridade opostas. Relatamos também um estudo teórico do impacto de vórtices magnéticos na histerese térmica de um par de nanoelementos elípticos de ferro, de 10nm de espessura, separados por um espaçador não-magnético e acoplados com um substrato antiferromagnético por energia de 3 troca. Nossos resultados indicam que há histerese térmica em temperatura ambiente (muito menor do que a temperatura de Curie do ferro), se o substrato for uma superfície não compensada de NiO. A histerese térmica consiste na diferença da sequência de estados magnéticos nos ramos de aquecimento e resfriamento de um ciclo térmico, e se origina na redução do valor do campo de interface em altas temperaturas, e na reestruturação das fases magnéticas impostas pela interação dipolar forte entre os dois nanoelementos de ferro. A largura da histerese térmica varia entre 500K à 100K para dimensões laterais de 125nm x 65nm e 145nm x 65nm. Focamos nos ciclos térmicos de dois estados especiais: o estado antiparalelo, com o nanoelmento em contato com o substrato alinhado na direção do campo de interface e o outro nanoelemento alinhado em direção oposta; e o estado paralelo em que os dois nanoelementos estão alinhados com o campo de interface em temperaturas baixas. Esses são os dois estados magnéticos básicos de células de memórias magnéticas de tunelamento. Mostramos que a interação dipolar confere estabilidade térmica ao estado antiparalelo e reduz a estabilidade térmica do estado paralelo. Além disso, nossos resultados indicam que um par de cilindros com dimensões de 125nm x 65nm, separados por 1.1nm, com campo de interface de 5.88kOe em temperatura de 100K, está no estado paralelo. Essa fase se mantém até 249K, quando há uma redução de 50% da magnetização devido à nucleação de um vórtice no nanoelemento com superfície livre. Pequenas variações da magnetização, devidas ao movimento do vórtice, são encontradas no ramo de aquecimento, até 600K. O estado encontrado em 600K se mantém ao longo do ramo de resfriamento, com pequenas mudanças na posição do vórtice. A existência de histerese térmica pode ser um sério limite de viabilidade de memórias magnéticas de tunelamento
Abstract: The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
URI: https://repositorio.ufrn.br/jspui/handle/123456789/16635
Appears in Collections:PPGFIS - Doutorado em Física

Files in This Item:
File Description SizeFormat 
MariaGDS_TESE.pdf10,01 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.