Please use this identifier to cite or link to this item:
Title: Disclosing the structural, electronic, magnetic, and morphological properties of CuMnO2: a unified experimental and theoretical approach
Authors: Santiago, Anderson de Azevedo Gomes
Tranquilin, Ricardo Luis
Oliveira, Marisa Carvalho de
Ribeiro, Renan Augusto Pontes
Lazaro, Sérgio Ricardo de
Corrêa, Marcio Assolin
Bohn, Felipe
Silva, Elson Longo da
Motta, Fabiana Villela da
Delmonte, Maurício Roberto Bomio
Keywords: Disclosing
Issue Date: 14-Feb-2020
Publisher: American Chemical Society
Citation: SANTIAGO, A. A. G.; TRANQUILIN, R. L.; OLIVEIRA, M. C.; RIBEIRO, R. A. P.; LAZARO, S. R. de; CORREA, M. A.; BOHN, F.; LONGO, E.; MOTTA, F. V.; BOMIO, M. R. D.. Disclosing the Structural, Electronic, Magnetic, and Morphological Properties of CuMnO2: a unified experimental and theoretical approach. The Journal Of Physical Chemistry C, [S.L.], v. 124, n. 9, p. 5378-5388, 14 fev. 2020. Disponível em: Acesso em: 20 abr. 2021.
Portuguese Abstract: Precise control of the overall performance for solid-state materials is associated with morphological modulations which provide an alternative way to the rational design based on understanding the corresponding electronic structures of the exposed surfaces. Experimental and theoretical efforts were combined herein to elucidate the structural−property relationship of CuMnO2 nanoparticles from different morphologies. The microwave-assisted hydrothermal method was employed to synthesize these crystals with different morphologies, while first-principle quantum mechanical calculations were performed at the DFT level to obtain the structural, electronic, and magnetic properties of CuMnO2 surfaces. Our structural results have confirmed a monoclinic structure for crednerite-type CuMnO2 nanoparticles described by the Jahn−Teller-distorted octahedral [MnO6] clusters, which are connected by linear 2-fold [CuO2]. FE-SEM images combined with Wulff construction analyses indicated that CuMnO2 nanoparticles adopt a hexagonal nanoplate-like morphology which can enclose a major extent of the (100) surface with contributions from (101), (110), and (111) surfaces. Electronic structure and magnetic characterizations were discussed by the role of the corresponding electronic states of exposed surfaces which control the energy-level band diagram and spin density distribution. These results extend our fundamental understanding of the atomic processes which underpin the morphological modulations of the CuMnO2 material, thus creating a new path to obtain selected nanoparticles with desirable properties which optimize their applications
ISSN: 1932-7455
Appears in Collections:CCET - DFTE - Artigos publicados em periódicos
CT - DEMAT - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
DisclosingStructuralElectronic_BOMIO_2020.pdf5,88 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons