Unveiling phase transitions with machine learning

dc.contributor.authorCanabarro, Askery Alexandre Canabarro Barbosa da
dc.contributor.authorFanchini, Felipe Fernandes
dc.contributor.authorMalvezzi, André Luiz
dc.contributor.authorPereira, Rodrigo Gonçalves
dc.contributor.authorAraújo, Rafael Chaves Souto
dc.date.accessioned2020-09-21T22:44:14Z
dc.date.available2020-09-21T22:44:14Z
dc.date.issued2019-07-22
dc.description.resumoThe classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systemspt_BR
dc.identifier.citationCANABARRO, Askery; FANCHINI, Felipe Fernandes; MALVEZZI, André Luiz; PEREIRA, Rodrigo; CHAVES, Rafael. Unveiling phase transitions with machine learning. Physical Review B, [s.l.], v. 100, n. 4, p. 045129, 22 jul. 2019. Disponível em: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045129. Acesso em: 15 set. 2020. http://dx.doi.org/10.1103/physrevb.100.045129.pt_BR
dc.identifier.doi10.1103/PhysRevB.100.045129
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/30141
dc.languageenpt_BR
dc.publisherAmerican Physical Societypt_BR
dc.subjectCondensed matter physicspt_BR
dc.subjectMany-body systemspt_BR
dc.titleUnveiling phase transitions with machine learningpt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
UnveilingPhaseTransitions_ARAUJO_2019.pdf
Tamanho:
1.44 MB
Formato:
Adobe Portable Document Format
Descrição:
Artigo
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar