Zebrafish tracking using YOLOv2 and Kalman filter

dc.contributor.authorBarreiros, Marta de Oliveira
dc.contributor.authorDantas, Diego de Oliveira
dc.contributor.authorSilva, Luis Claudio de Oliveira
dc.contributor.authorRibeiro, Sidarta Tollendal Gomes
dc.contributor.authorBarros Filho, Allan Kardec Duailibe
dc.date.accessioned2021-02-10T17:18:30Z
dc.date.available2021-02-10T17:18:30Z
dc.date.issued2021-02-05
dc.description.resumoFish show rapid movements in various behavioral activities or associated with the presence of food. However, in periods of rapid movement, the rate at which occlusion occurs among the fish is quite high, causing inconsistency in the detection and tracking of fish, hindering the fish's identity and behavioral trajectory over a long period of time. Although some algorithms have been proposed to solve these problems, most of their applications were made in groups of fish that swim in shallow water and calm behavior, with few sudden movements. To solve these problems, a convolutional network of object recognition, YOLOv2, was used to delimit the region of the fish heads to optimize individual fish detection. In the tracking phase, the Kalman filter was used to estimate the best state of the fish's head position in each frame and, subsequently, the trajectories of each fish were connected among the frames. The results of the algorithm show adequate performances in the trajectories of groups of zebrafish that exhibited rapid movementspt_BR
dc.identifier.citationBARREIROS, Marta de Oliveira; DANTAS, Diego de Oliveira; SILVA, Luís Claudio de Oliveira; RIBEIRO, Sidarta; BARROS, Allan Kardec. Zebrafish tracking using YOLOv2 and Kalman filter. Scientific Reports, [S.l.], v. 11, n. 1, p. 3219, fev. 2021. doi: http://dx.doi.org/10.1038/s41598-021-81997-9. Disponível em: https://www.nature.com/articles/s41598-021-81997-9. Acesso em: 10 fev. 2021.pt_BR
dc.identifier.doi10.1038/s41598-021-81997-9
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/31459
dc.languageenpt_BR
dc.publisherSpringer Science and Business Media LLC.pt_BR
dc.rightsAttribution 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/br/*
dc.subjectZebrafishpt_BR
dc.subjectYOLOv2 networkpt_BR
dc.subjectKalman filterpt_BR
dc.subjectBehavior, animalpt_BR
dc.titleZebrafish tracking using YOLOv2 and Kalman filterpt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
ZebrafishTrackingYOLOv2_Ribeiro_2021.pdf
Tamanho:
2.94 MB
Formato:
Adobe Portable Document Format
Descrição:
ZebrafishTrackingYOLOv2_Ribeiro_2021
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar