Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network

dc.contributor.authorSouza, Domingos Fabiano de Santana
dc.contributor.authorPadilha, Carlos Eduardo de Araújo
dc.contributor.authorOliveira Júnior, Sérgio Dantas de
dc.contributor.authorOliveira, Jackson Araújo de
dc.contributor.authorMacedo, Gorete Ribeiro de
dc.contributor.authorSantos, Everaldo Silvino dos
dc.date.accessioned2021-12-06T18:15:05Z
dc.date.available2021-12-06T18:15:05Z
dc.date.issued2017-05
dc.description.resumoA hybrid GMDH neural network model has been developed in order to predict the partition coefficients of invertase from Baker's yeast. ATPS experiments were carried out changing the molar average mass of PEG (1500–6000 Da), pH (4.0–7.0), percentage of PEG (10.0–20.0 w/w), percentage of MgSO4 (8.0–16.0 w/w), percentage of the cell homogenate (10.0–20.0 w/w) and the percentage of MnSO4 (0–5.0 w/w) added as cosolute. The network evaluation was carried out comparing the partition coefficients obtained from the hybrid GMDH neural network with the experimental data using different statistical metrics. The hybrid GMDH neural network model showed better fitting (AARD = 32.752%) as well as good generalization capacity of the partition coefficients of the ATPS than the original GMDH network approach and a BPANN model. Therefore hybrid GMDH neural network model appears as a powerful tool for predicting partition coefficients during downstream processing of biomoleculespt_BR
dc.identifier.citationPADILHA, Carlos Eduardo de Araújo; OLIVEIRA JÚNIOR, Sérgio Dantas de; SOUZA, Domingos Fabiano de Santana; OLIVEIRA, Jackson Araújo de; MACEDO, Gorete Ribeiro de; SANTOS, Everaldo Silvino dos. Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network. Chinese Journal Of Chemical Engineering, [S.L.], v. 25, n. 5, p. 652-657, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cjche.2016.07.015. Disponível em <https://www.sciencedirect.com/science/article/pii/S1004954116304165?via%3Dihub> Acesso em 05 nov. 2021.pt_BR
dc.identifier.doi10.1016/j.cjche.2016.07.015
dc.identifier.issn1004-9541
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/45191
dc.languageenpt_BR
dc.publisherElsevierpt_BR
dc.subjectPartitioningpt_BR
dc.subjectInvertasept_BR
dc.subjectAqueous two phase systempt_BR
dc.subjectGMDHpt_BR
dc.subjectGMDHpt_BR
dc.titlePartition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural networkpt_BR
dc.typearticlept_BR

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar