A Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments
dc.contributor.advisor | Fernandes, Marcelo Augusto Costa | pt_BR |
dc.contributor.advisorID | https://orcid.org/0000-0001-7536-2506 | |
dc.contributor.advisorLattes | http://lattes.cnpq.br/3475337353676349 | |
dc.contributor.author | Balza, Micael | pt_BR |
dc.contributor.referees1 | Silva, Sérgio Natan | |
dc.contributor.referees2 | Pedrosa, Diogo Pinheiro Fernandes | pt_BR |
dc.contributor.referees3 | Oliveira, Fábio Fonseca de | |
dc.date.accessioned | 2025-05-15T22:06:59Z | |
dc.date.available | 2025-05-15T22:06:59Z | |
dc.date.issued | 2025-02-19 | |
dc.description.resumo | Autonomous navigation in mobile robots is a complex challenge, particularly in unknown and dynamic environments where obstacle avoidance and real-time trajectory optimization are crucial. This work introduces the MetaHeuristic Real-Time Safe Navigation (MHRTSN) strategy, which integrates potential fields with population-based metaheuristics to enhance trajectory planning and navigation efficiency. The proposed strategy was evaluated through a series of simulations in different static and dynamic scenarios, comparing the performance of two versions: MetaHeuristic Real-Time Safe Navigation with Genetic Algorithm (MHRTSN-GA) and MetaHeuristic Real-Time Safe Navigation with Particle Swarm Optimization (MHRTSN-PSO). The evaluation considered key metrics such as displacement, distance traveled, CPU time, and clock time. The results indicate that both versions provide sub-optimal solutions, with MHRTSN-PSO demonstrating superior performance in terms of computational efficiency and convergence when using a small population size. Comparisons with existing approaches in the literature revealed that MHRTSN generated paths of similar length while maintaining a safer distance from obstacles. Thus, the proposed approach offers an efficient and safe solution for autonomous navigation in mobile robots, contributing to advancements in real-world robotic applications. | |
dc.identifier.citation | BALZA, Micael. A Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2025. 73f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2025. | |
dc.identifier.uri | https://repositorio.ufrn.br/handle/123456789/63578 | |
dc.language.iso | en | |
dc.publisher | Universidade Federal do Rio Grande do Norte | |
dc.publisher.country | BR | pt_BR |
dc.publisher.initials | UFRN | pt_BR |
dc.publisher.program | PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Autonomous navigation | |
dc.subject | Metaheuristic | |
dc.subject | Mobile robots | |
dc.subject | Path planning | |
dc.subject | Unknown environment | |
dc.subject.cnpq | ENGENHARIAS::ENGENHARIA ELETRICA | |
dc.title | A Real-Time meta-heuristic-based safe navigation approach for mobile robots in unknown environments | |
dc.type | masterThesis | pt_BR |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- RealTimemeta_Balza_2025.pdf
- Tamanho:
- 41.4 MB
- Formato:
- Adobe Portable Document Format
Nenhuma Miniatura disponível
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.53 KB
- Formato:
- Item-specific license agreed upon to submission
Nenhuma Miniatura disponível