Density and electrical conductivity for aqueous mixtures of monoethylene glycol and sodium chloride: experimental data and data-driven modeling for composition determination

dc.contributor.authorChiavone Filho, Osvaldo
dc.contributor.authorMoura Neto, Mário Hermes de
dc.contributor.authorMonteiro, Mateus Fernandes
dc.contributor.authorFerreira, Fedra A. V.
dc.contributor.authorSilva, Dannielle Janainne
dc.contributor.authorFigueiredo, Camila S.
dc.contributor.authorCiambelli, João Rafael Perroni
dc.contributor.authorPereira, Leonardo S.
dc.contributor.authorNascimento, Jailton Ferreira do
dc.date.accessioned2021-11-10T21:33:54Z
dc.date.available2021-11-10T21:33:54Z
dc.date.issued2021-04-09
dc.description.resumoMonoethylene glycol (MEG) is a gas hydrate inhibitor widely applied for natural gas flow assurance. A series of density and electrical conductivity measurements of water + MEG + NaCl mixtures are reported, allowing the supervision of the MEG regeneration unit. Density (509 data points) and electrical conductivity (212 data points) measurements were performed in wide ranges of temperature, T = 278.15−363.15 K, and concentration of solvents and NaCl up to almost saturation. The theory of solutions was applied for density description using excess volume, which was correlated with the Redlich−Kister equation. The resulting absolute and relative mean deviations are 0.00127 g·cm−3 and 0.12%, indicating accurate representation. A semi- empirical correlation with 15 adjustable parameters was considered for electrical conductivity of water + MEG + NaCl mixtures. The obtained absolute and relative mean deviations are 1.49 mS·cm−1 and 5.70%. The properties functions presented an approximately orthogonal behavior to each other, allowing the determination of mixture composition from experimental density and electrical conductivity data. The Matlab environment was found to be robust in solving the nonlinear system of two equations with constraints. The proposed methodology was extensively tested, and deviations less than 0.0060 and 0.0011 in solvents and NaCl mass fractions were obtained, respectively, demonstrating the required accuracy for industrial applicationpt_BR
dc.identifier.citationMOURA-NETO, MARIO H.; MONTEIRO, Mateus Fernandes; FERREIRA, F. A. S. V. M. ; SILVA, D. J. ; FIGUEIREDO, C. S. ; CIAMBELLI, J. R. P. ; PEREIRA, L. S. ; DO NASCIMENTO, JAILTON FERREIRA ; CHIAVONE-FILHO, O. . Density and Electrical Conductivity for Aqueous Mixtures of Monoethylene Glycol and Sodium Chloride: Experimental Data and Data?driven Modeling for Composition Determination. JOURNAL OF CHEMICAL AND ENGINEERING DATA, v. 66, p. 1-15, 2021. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jced.0c00962. Acesso em: 16 jun. 2021.https://doi.org/10.1021/acs.jced.0c00962.pt_BR
dc.identifier.doi10.1021/acs.jced.0c00962
dc.identifier.issn0021-9568
dc.identifier.issn1520-5134
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/44882
dc.languageenpt_BR
dc.publisherACS Publicationspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectDensity and Electrical Conductivitypt_BR
dc.subjectMonoethylene Glycolpt_BR
dc.subjectData-Drivenpt_BR
dc.subjectComposition Determinationpt_BR
dc.titleDensity and electrical conductivity for aqueous mixtures of monoethylene glycol and sodium chloride: experimental data and data-driven modeling for composition determinationpt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
DensityElectricalConductivity_ChiavoneFilho_2021.pdf
Tamanho:
4.85 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar