A nonhomogeneous Poisson process geostatistical model

dc.contributor.authorMorales, Fidel Ernesto Castro
dc.contributor.authorVicini, Lorena
dc.contributor.authorHotta, Luiz K.
dc.contributor.authorAchcar, Jorge A.
dc.date.accessioned2022-10-13T18:19:48Z
dc.date.available2022-10-13T18:19:48Z
dc.date.issued2017
dc.description.resumoThis paper introduces a new geostatistical model for counting data under a space-time approach using nonhomogeneous Poisson processes, where the random intensity process has an additive formulation with two components: a Gaussian spatial component and a component accounting for the temporal effect. Inferences of interest for the proposed model are obtained under the Bayesian paradigm. To illustrate the usefulness of the proposed model, we first develop a simulation study to test the efficacy of the Markov Chain Monte Carlo (MCMC) method to generate samples for the joint posterior distribution of the model’s parameters. This study shows that the convergence of the MCMC algorithm used to simulate samples for the joint posterior distribution of interest is easily obtained for different scenarios. As a second illustration, the proposed model is applied to a real data set related to ozone air pollution collected in 22 monitoring stations in Mexico City in the 2010 year. The proposed geostatistical model has good performance in the data analysis, in terms of fit to the data and in the identification of the regions with the highest pollution levels, that is, the southwest, the central and the northwest regions of Mexico City.pt_BR
dc.identifier.citationMORALES, Fidel Ernesto Castro et al; VICINI, Lorena; HOTTA, Luiz K.; ACHCAR, Jorge A. A nonhomogeneous Poisson process geostatistical model. Stochastic Environmental Research and Risk Assessment, v. 31, p. 493–507, 2017. Diponível em: https://link.springer.com/article/10.1007%2Fs00477-016-1275-x. Acesso em: 06 dez. 2017pt_BR
dc.identifier.doi10.1007/s00477-016-1275-x
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/49562
dc.languageenpt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectNonhomogeneous Poisson processespt_BR
dc.subjectGeostatistical datapt_BR
dc.subjectCox log-Gaussian processpt_BR
dc.subjectBayesian inferencept_BR
dc.subjectMarkov Chain Monte Carlopt_BR
dc.subjectOzone pollutionpt_BR
dc.titleA nonhomogeneous Poisson process geostatistical modelpt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
ANonhomogeneousPoisson_2016.pdf
Tamanho:
1.82 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar