A semi-parametric statistical test to compare complex networks

dc.contributor.authorFujita, Andre
dc.contributor.authorLira, Eduardo Silva
dc.contributor.authorSantos, Suzana de Siqueira
dc.contributor.authorBando, Silvia Yumi
dc.contributor.authorSoares, Gabriela Eleuterio
dc.contributor.authorTakahashi, Daniel Yasumasa
dc.date.accessioned2019-09-04T14:16:47Z
dc.date.available2019-09-04T14:16:47Z
dc.date.issued2019-08-02
dc.description.resumoThe modelling of real-world data as complex networks is ubiquitous in several scientific fields, for example, in molecular biology, we study gene regulatory networks and protein–protein interaction (PPI)_networks; in neuroscience, we study functional brain networks; and in social science, we analyse social networks. In contrast to theoretical graphs, real-world networks are better modelled as realizations of a random process. Therefore, analyses using methods based on deterministic graphs may be inappropriate. For example, verifying the isomorphism between two graphs is of limited use to decide whether two (or more) real-world networks are generated from the same random process. To overcome this problem, in this article, we introduce a semi-parametric approach similar to the analysis of variance to test the equality of generative models of two or more complex networks. We measure the performance of the proposed statistic using Monte Carlo simulations and illustrate its usefulness by comparing PPI networks of six enteric pathogens.pt_BR
dc.identifier.citationFUJITA, A.; LIRA, E. S.; SANTOS, S. S.; BANDO, S. Y.; SOARES, G. E.; TAKAHASHI, D. Y. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, [s. l.], p. 1-17, ago. 2019. DOI: https://doi.org/10.1093/comnet/cnz028. Disponível em: https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz028/5543003?redirectedFrom=fulltext. Acesso em: 04 set. 2019.pt_BR
dc.identifier.doihttps://doi.org/10.1093/comnet/cnz028
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/27629
dc.languageenpt_BR
dc.subjectRandom graphpt_BR
dc.subjectparameter estimationpt_BR
dc.subjectmodel selectionpt_BR
dc.subjectANOVApt_BR
dc.subjectgraph spectrumpt_BR
dc.subjectisomorphismpt_BR
dc.titleA semi-parametric statistical test to compare complex networkspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
DanielTakahashi_ICe_2019_A semi-parametric statistical.pdf
Tamanho:
1.53 MB
Formato:
Adobe Portable Document Format
Descrição:
DanielTakahashi_ICe_2019_A semi-parametric statistical
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar