Utilização do software GeoGebra para aproximar funções através de mínimos quadrados

dc.contributor.authorSantana, Fabiana Tristão de
dc.contributor.authorGama, Joao Paulo de Freitas
dc.date.accessioned2020-11-13T14:18:05Z
dc.date.available2020-11-13T14:18:05Z
dc.date.issued2017-12
dc.description.abstractFor this work a detailed study of approximations by least squares in orthogonal vector spaces. In particular, we use this theory to get the best approximation of a function f in space W generated by functions 1, cos(t), cos(2t),..., cos(nt),sen(t),sen(2t),...,sen(nt), using an appropriate internal product. This function is called a trigonometric polynomial and coincides with the nth partial sum of the Fourier series of the function f , once their coefficients coincide with the Fourier coefficients of f . The obtained polynomial was used to approximate a force that acts on a mechanical system with the use of the software GeoGebra which allowed to better understand the construction of the function and, at the same time, the graphic representation showed that increasing the degree of the polynomial better is the approximation obtained.pt_BR
dc.description.resumoPara este trabalho foi feito um estudo detalhado de aproximações por Mınimos Quadrados em espaços vetoriais ortogonais. Em particular, utilizamos esta teoria para obter a melhor aproximação de uma função f no espaço W, gerado pelas funções 1, cos(t), cos(2t),..., cos(nt),sen(t),sen(2t),..., e sen(nt) utilizando um produto interno apropriado. Tal função e denominada de polinômio trigonométrico e coincide com a n- esima soma parcial da serie de Fourier da função f , uma vez que seus coeficientes coincidem com os coeficientes de Fourier de f . O polinômio obtido foi utilizado para aproximar uma força que atua sobre um sistema mecânico com o uso do software GeoGebra o que permitiu compreender melhor a construção da função e, ao mesmo tempo, a representação gráfica mostrou que aumentando o grau do polinômio melhor é a aproximação obtidapt_BR
dc.identifier.citationSANTANA, Fabiana T.; GAMA, J. P. F. . Utilização do software GeoGebra para aproximar funções através de mínimos quadrados. Revista Eletrônica Paulista de Matemática, v. 10, p. 1-9, 2017. Disponível em: https://www.fc.unesp.br/Home/Departamentos/Matematica/revistacqd2228/v10a11-utilizacao-do-software-geogebra.pdf Acesso em: 11 set. 2020pt_BR
dc.identifier.doi10.21167/cqdvol10ermac201723169664jpfgfts149157
dc.identifier.issn2316-9664
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/30572
dc.languagept_BRpt_BR
dc.publisherRevista Eletrõnica Paulista de Matematicapt_BR
dc.rightsAttribution 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/br/*
dc.subjectMínimos quadradospt_BR
dc.subjectSeries de Fourierpt_BR
dc.subjectGeoGebrapt_BR
dc.subjectSistemas mecânicospt_BR
dc.subjectMatematica aplicada a fısicapt_BR
dc.subjectLeast squarespt_BR
dc.subjectFourier seriespt_BR
dc.subjectMechanical systemspt_BR
dc.subjectMathematics applied to physicspt_BR
dc.titleUtilização do software GeoGebra para aproximar funções através de mínimos quadradospt_BR
dc.title.alternativeUsing GeoGebra software to approximate functions through least squarespt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
UtilizacaoSoftwareGeoGebra_SANTANA_2017.pdf
Tamanho:
1.63 MB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar