De solutione problematum diophanteorum per números integros : o primeiro trabalho de Euler sobre equações diofantinas

dc.contributor.advisorFossa, John Andrewpt_BR
dc.contributor.advisorIDpor
dc.contributor.advisorLatteshttp://lattes.cnpq.br/2466525106349625por
dc.contributor.authorDantas, Joice de Andradept_BR
dc.contributor.authorIDpor
dc.contributor.authorLatteshttp://lattes.cnpq.br/5321678669060229por
dc.contributor.referees1Sá, Pedro Franco dept_BR
dc.contributor.referees1IDpor
dc.contributor.referees1Latteshttp://lattes.cnpq.br/4323922632919962por
dc.contributor.referees2Mendes, Iran Abreupt_BR
dc.contributor.referees2IDpor
dc.contributor.referees2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4704236U8por
dc.date.accessioned2014-12-17T14:36:38Z
dc.date.available2012-09-20pt_BR
dc.date.available2014-12-17T14:36:38Z
dc.date.issued2011-11-07pt_BR
dc.description.abstractThe present dissertation analyses Leonhard Euler´s early mathematical work as Diophantine Equations, De solutione problematum diophanteorum per números íntegros (On the solution of Diophantine problems in integers). It was published in 1738, although it had been presented to the St Petersburg Academy of Science five years earlier. Euler solves the problem of making the general second degree expression a perfect square, i.e., he seeks the whole number solutions to the equation ax2+bx+c = y2. For this purpose, he shows how to generate new solutions from those already obtained. Accordingly, he makes a succession of substitutions equating terms and eliminating variables until the problem reduces to finding the solution of the Pell Equation. Euler erroneously assigns this type of equation to Pell. He also makes a number of restrictions to the equation ax2+bx+c = y and works on several subthemes, from incomplete equations to polygonal numberseng
dc.description.resumoNesta pesquisa analisamos historicamente e matematicamente o primeiro trabalho de Leonhard Euler sobre Equações Diofantinas o De solutione problematum diophanteorum per números integros ( Sobre a solução de problemas diofantinos por números inteiros ). Foi publicado em 1738, embora apresentado à Academia de São Petersburgo cinco anos antes. No texto, Euler trata do problema de fazer com que a expressão generalizada do segundo grau seja igual a um quadrado perfeito, isto é, procura soluções no conjunto dos números inteiros para equação ax2+bx+c = y2. Para tanto, Euler mostra como descobrir mais soluções depois que uma primeira é encontrada, fazendo uma série de substituições combinando termos e eliminando variáveis, até que o trabalho se resume a encontrar a solução para ,q=ⱱap²+1 uma equação de Pell. Este trabalho é o primeiro também em que Euler atribui erroneamente esse tipo de equação a Pell. Euler faz também, uma série de restrições para a equação ax2+bx+c = y2 e trabalha com diversos subcasos, que vão desde equações incompletas até o trabalho com números poligonaispor
dc.formatapplication/pdfpor
dc.identifier.citationDANTAS, Joice de Andrade. De solutione problematum diophanteorum per números integros : o primeiro trabalho de Euler sobre equações diofantinas. 2011. 81 f. Dissertação (Mestrado em Educação) - Universidade Federal do Rio Grande do Norte, Natal, 2011.por
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/14500
dc.languageporpor
dc.publisherUniversidade Federal do Rio Grande do Nortepor
dc.publisher.countryBRpor
dc.publisher.departmentEducaçãopor
dc.publisher.initialsUFRNpor
dc.publisher.programPrograma de Pós-Graduação em Educaçãopor
dc.rightsAcesso Abertopor
dc.subjectHistória da teoria dos númerospor
dc.subjectEquações diofantinaspor
dc.subjectLeonhard Eulerpor
dc.subjectHistory of number theoryeng
dc.subjectDiophantine equationseng
dc.subjectLeonhard Eulereng
dc.subject.cnpqCNPQ::CIENCIAS HUMANAS::EDUCACAOpor
dc.titleDe solutione problematum diophanteorum per números integros : o primeiro trabalho de Euler sobre equações diofantinaspor
dc.typemasterThesispor

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
JoiceAD_DISSERT.pdf
Tamanho:
4.03 MB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar