Rotation and lithium abundance of solar-analog stars: Theoretical analysis of observations

dc.contributor.authorNascimento Jr, J. D. do
dc.contributor.authorCosta, J. S. da
dc.contributor.authorMedeiros, José Renan de
dc.date.accessioned2020-05-18T18:37:51Z
dc.date.available2020-05-18T18:37:51Z
dc.date.issued2010
dc.description.resumoContext. Rotational velocity, lithium abundance, and the mass depth of the outer convective zone are key parameters in the study of the processes at work in the stellar interior, in particular when examining the poorly understood processes operating in the interior of solar–analog stars. Aims. We investigate whether the large dispersion in the observed lithium abundances of solar-analog stars can be explained by the depth behavior of the outer convective zone masses, within the framework of the standard convection model based on the local mixing-length theory. We also analyze the link between rotation and lithium abundance in solar-analog stars. Methods. We computed a new extensive grid of stellar evolutionary models, applicable to solar-analog stars, for a finely discretized set of mass and metallicity. From these models, the stellar mass, age, and mass depth of the outer convective zone were estimated for 117 solar-analog stars, using Teff and [Fe/H] available in the literature, and the new HIPPARCOS trigonometric parallax measurements. Results. We determine the age and mass of the outer convective zone for a bona fide sample of 117 solar-analog stars. No significant one-to-one correlation is found between the computed convection zone mass and published lithium abundance, indicating that the large A(Li) dispersion in solar analogs cannot be explained by the classical framework of envelope convective mixing coupled with lithium depletion at the bottom of the convection zone. Conclusions. These results illustrate the need for an extra-mixing process to explain lithium behavior in solar-analog stars, such as, shear mixing caused by differential rotation. To derive a more realistic definition of solar-analog stars, as well as solar-twin stars, it seems important to consider the inner physical properties of stars, such as convection, hence rotation and magnetic properties.pt_BR
dc.identifier.citationNASCIMENTO, J. D.; COSTA, J. S. da; MEDEIROS, José Renan de. Rotation and lithium abundance of solar-analog stars. Astronomy & Astrophysics (Berlin. Print), v. 519, p. A101, 2010. ISSN 1432-0746 versão online. DOI https://doi.org/10.1051/0004-6361/200811026. Disponível em: https://www.aanda.org/articles/aa/abs/2010/11/aa11026-08/aa11026-08.html. Acesso em: 18 maio 2020. Reproduzido com permissão da Astronomy & Astrophysics, © ESO.pt_BR
dc.identifier.doihttps://doi.org/10.1051/0004-6361/200811026
dc.identifier.issn0004-6361 (print), 1432-0746 (online)
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/28998
dc.languageenpt_BR
dc.publisherAstronomy & Astrophysicspt_BR
dc.subjectHertzsprung-Russell and C-M diagramspt_BR
dc.subjectStars: rotationpt_BR
dc.subjectStars: abundancespt_BR
dc.subjectStars: fundamental parameterspt_BR
dc.titleRotation and lithium abundance of solar-analog stars: Theoretical analysis of observationspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
RotationAndLithiumAbundance_Medeiros_2010.pdf
Tamanho:
552.18 KB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar