Predicting soft robot’s locomotion fitness

dc.contributor.authorBiazzi, Renata Biaggi
dc.contributor.authorFujita, André
dc.contributor.authorTakahashi, Daniel Yasumasa
dc.date.accessioned2021-08-09T12:01:01Z
dc.date.available2021-08-09T12:01:01Z
dc.date.issued2021-07-07
dc.description.resumoOrganisms with different body morphology and movement dynamics have distinct abilities to move through the environment. Despite such truism, there is a lack of general principles that predict which shapes and dynamics make the organisms more fit to move. Studying a minimal yet embodied soft robot model under the influence of gravity, we find three features that predict robot locomotion fitness: (1) A larger body is better. (2) Two-point contact with the ground is better than one-point contact. (3) Out-of-phase oscillating body parts increase locomotion fitness. These design principles can guide the selection rules for evolutionary algorithms to obtain robots with higher locomotion fitnesspt_BR
dc.identifier.citationBIAZZI, Renata B.; FUJITA, André; TAKAHASHI, Daniel Y. Predicting soft robot's locomotion fitness. In: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, 23., 2021, Lille, França. Proceedings […]. Nova Iorque: Association for Computing Machinery, 2021. p. 81-82. Disponível em: https://dl.acm.org/doi/10.1145/3449726.3459417. Acesso em: 6 ago. 21.pt_BR
dc.identifier.doi10.1145/3449726.3459417
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/33049
dc.languageenpt_BR
dc.subjectEvolutionary roboticspt_BR
dc.subjectFitness evaluationpt_BR
dc.subjectHeuristicspt_BR
dc.subjectComplex systemspt_BR
dc.subjectTheorypt_BR
dc.titlePredicting soft robot’s locomotion fitnesspt_BR
dc.typeconferenceObjectpt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Poster_PredictingSof_Takahashi_2021.pdf
Tamanho:
2.57 MB
Formato:
Adobe Portable Document Format
Descrição:
Poster_PredictingSof_Takahashi_2021
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.53 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar