Reconfigurable hardware architecture for SHA-256 hashing in blockchain and IoT applications

dc.contributor.advisorFernandes, Marcelo Augusto Costa
dc.contributor.advisor-co1Silva, Sérgio Natan
dc.contributor.advisorIDhttps://orcid.org/0000-0001-7536-2506pt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/3475337353676349pt_BR
dc.contributor.authorSantos Júnior, Carlos Eduardo de Barros
dc.contributor.authorLatteshttp://lattes.cnpq.br/1334493042199015pt_BR
dc.contributor.referees1Dias, Leonardo Alves
dc.contributor.referees2Silva, Lucileide Medeiros Dantas da
dc.contributor.referees3Coutinho, Maria Gracielly Fernandes
dc.date.accessioned2025-04-15T20:24:56Z
dc.date.available2025-04-15T20:24:56Z
dc.date.issued2024-12-11
dc.description.abstractAs IoT device usage continues to expand, ensuring secure, low-latency data exchange has become essential, driving research into blockchain-based solutions to meet these requirements. Addressing this demand, this thesis presents a reconfigurable hardware architecture for the SHA-256 hash algorithm, focusing on blockchain and IoT applications, utilizing Field Programmable Gate Arrays (FPGAs) as the target hardware to maximize performance and efficiency in data security processes. The proposed FPGA implementation provides adaptability across various environments, from network servers to energyconstrained IoT devices. Key innovations in this proposal include a multicore parallelism system that optimizes the use of available FPGA resources and a structured analysis of resource consumption, considering both clock frequency and throughput. Additionally, the thesis provides a power consumption analysis, comparing power efficiency across different hardware architectures. The proposed design achieved the implementation of 16 parallel cores on a Xilinx Virtex 6 xc6vlx240t-1ff1156 FPGA, reaching a maximum throughput of 1.4Gbps and dynamic power consumption of 0.452W. This performance represents up to 16x speedup over previous FPGA models and a reduction of up to 234.52x in dynamic power consumption compared to implementations from prior research. Additional comparisons were conducted with other hardware architectures, such as 8- and 16-bit microcontrollers, general-purpose processors, and GPUs. The results underscore the versatility and scalability of FPGA-based SHA-256 implementations for applications requiring high throughput and power efficiency, establishing this work as a significant contribution to information security and computational performance in IoT environments within a blockchain context.pt_BR
dc.description.resumoÀ medida que o uso de dispositivos IoT continua a crescer, garantir uma troca de dados segura e de baixa latência tornou-se uma necessidade essencial, impulsionando pesquisas em soluções baseadas em blockchain para atender a esses requisitos. Em resposta a essa demanda, esta tese apresenta uma arquitetura de hardware reconfigurável para o algoritmo de hash SHA-256, com foco em aplicações de blockchain e IoT, utilizando FPGAs (Field Programmable Gate Arrays) como hardware alvo para maximizar o desempenho e a eficiência em processos de segurança de dados. A implementação proposta em FPGA oferece adaptabilidade para diferentes ambientes, desde servidores de rede até dispositivos IoT com restrições de energia. As principais inovações desta proposta incluem um sistema de paralelismo multinúcleo que otimiza o uso dos elementos disponíveis na FPGA e uma análise estruturada do consumo desses recursos, considerando tanto a frequência de clock quanto o throughput. Adicionalmente, a tese contempla uma análise de consumo de energia, comparando o desempenho de consumo de potência entre diferentes arquiteturas de hardware. O design proposto alcançou a implementação de 16 núcleos paralelos em um FPGA Xilinx Virtex 6 xc6vlx240t-1ff1156, atingindo um throughput máximo de 1,4Gbps e consumo de potência dinâmica de 0,452W. Este desempenho representa um speedUp de até 16x em relação a modelos FPGA anteriores e uma redução de até 234,52x no consumo de potência dinâmica quando comparado a implementação de pesquisas anteriores. Comparações adicionais foram realizadas com outras arquiteturas de hardware, como microcontroladores de 8 e 16 bits, processadores de uso geral e GPUs. Os resultados evidenciam a versatilidade e escalabilidade da implementação do SHA-256 em FPGA para aplicações que exigem alto throughput e eficiência no consumo de potência, posicionando este trabalho como uma contribuição significativa à segurança da informação e desempenho computacional em ambientes de IoT no contexto de blockchain.pt_BR
dc.identifier.citationSANTOS JÚNIOR, Carlos Eduardo de Barros. Reconfigurable hardware architecture for SHA-256 hashing in blockchain and IoT applications. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2024. 100f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/63475
dc.languagept_BRpt_BR
dc.publisherUniversidade Federal do Rio Grande do Nortept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.initialsUFRNpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSHA-256pt_BR
dc.subjectBlockchainpt_BR
dc.subjectFPGApt_BR
dc.subjectIoTpt_BR
dc.subjectReconfigurable hardwarept_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApt_BR
dc.titleReconfigurable hardware architecture for SHA-256 hashing in blockchain and IoT applicationspt_BR
dc.typedoctoralThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Reconfigurablehardwarearchitecture_SantosJunior_2024.pdf
Tamanho:
1.3 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar