Detecting cell assemblies in large neuronal populations

dc.contributor.authorLopes-dos-Santos, Vitor
dc.contributor.authorRibeiro, Sidarta Tollendal Gomes
dc.contributor.authorTort, Adriano Bretanha Lopes
dc.date.accessioned2013-08-05T12:34:00Z
dc.date.available2013-08-05T12:34:00Z
dc.date.issued2013-07
dc.description.abstractRecent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythmpt_BR
dc.identifier.citationLOPES-DOS-SANTOS, Vitor; RIBEIRO, Sidarta; TORT, Adriano B. L. Detecting cell assemblies in large neuronal populations. Journal of Neuroscience Methods, 2013. DOI:pt_BR
dc.identifier.issn0165-0270
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/1/6252
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCell assembliespt_BR
dc.subjectPrincipal component analysispt_BR
dc.subjectIndependent componentpt_BR
dc.subjectAssembly vectorspt_BR
dc.titleDetecting cell assemblies in large neuronal populationspt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
VitorLopes-dos-Santos_ICE_Detecting_2013.pdf
Tamanho:
6.48 MB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar