Photospheric activity and rotation of the planet-hosting star CoRoT-4a

dc.contributor.authorLanza, A. F.
dc.contributor.authorAigrain, S.
dc.contributor.authorMessina, S.
dc.contributor.authorLeto, G.
dc.contributor.authorPagano, I.
dc.contributor.authorAuvergne, M.
dc.contributor.authorBaglin, A.
dc.contributor.authorBarge, P.
dc.contributor.authorBonomo, A. S.
dc.contributor.authorCameron, A. Collier
dc.contributor.authorCutispoto, G.
dc.contributor.authorDeleuil, M.
dc.contributor.authorMedeiros, José Renan de
dc.contributor.authorFoing, B.
dc.contributor.authorMoutou, C.
dc.date.accessioned2020-05-15T14:43:28Z
dc.date.available2020-05-15T14:43:28Z
dc.date.issued2009-10
dc.description.resumoAims. The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type mainsequence star (CoRoT-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, the second longest one among the transiting planets known to date. We study the surface rotation and the activity of the host star during an uninterrupted sequence of optical observations of 58 days. Methods. Our approach is based on a maximum entropy spot modelling technique extensively tested by modelling the variation in the total solar irradiance. It has been successfully applied to model the light curve of another active star with a transiting planet observed by CoRoT, i.e., CoRoT-2a. It assumes that stellar active regions consist of cool spots and bright faculae, analogous to sunspots and solar photospheric faculae, whose visibility is modulated by stellar rotation. Results. The modelling of the light curve of CoRoT-4a reveals three main active longitudes with lifetimes between ∼30 and ∼60 days that rotate quasi-synchronously with the orbital motion of the planet. The different rotation rates of the active longitudes are interpreted in terms of surface differential rotation, and a lower limit of 0.057 ± 0.015 is derived for its relative amplitude. The enhancement of activity observed close to the subplanetary longitude suggests a magnetic star-planet interaction, although the short duration of the time series prevents us from drawing definite conclusions. Conclusions. The present work confirms the quasi-synchronicity between stellar rotation and planetary orbital motion in the CoRoT4 system and provides a lower limit for the surface differential rotation of the star. This information can be important in trying to understand the formation and evolution of this highly interesting planetary system. Moreover, there is an indication of a possible star-planet magnetic interaction that needs to be confirmed by future studies.pt_BR
dc.identifier.citationMedeiros, Jose Renan de et al. Photospheric activity and rotation of the planet-hosting star CoRoT-4a. Astronomy & Astrophysics (Berlin. Print), v. 506, n. 1, p. 255-262, 2009. ISSN 1432-0746 versão online. DOI https://doi.org/10.1051/0004-6361/200811487. Disponível em: https://www.aanda.org/articles/aa/abs/2009/40/aa11487-08/aa11487-08.html. Acesso em: 15 maio 2020. Reproduzido com permissão da Astronomy & Astrophysics, © ESO.pt_BR
dc.identifier.doi10.1051/0004-6361/200811487
dc.identifier.issn0004-6361 (print); 1432-0746 (online)
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/28988
dc.languageenpt_BR
dc.publisherAstronomy & Astrophysicspt_BR
dc.subjectStars: magnetic fieldspt_BR
dc.subjectStars: late-typept_BR
dc.subjectStars: activitypt_BR
dc.subjectStars: rotationpt_BR
dc.subjectPlanetary systemspt_BR
dc.subjectStars: individual: CoRoT-4apt_BR
dc.titlePhotospheric activity and rotation of the planet-hosting star CoRoT-4apt_BR
dc.typearticlept_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
PhotosphericActivityAndRotation_Medeiros_2009.pdf
Tamanho:
210.1 KB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar