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RESUMO 

 

Este trabalho apresenta o desenvolvimento de métodos de classificação 

multivariada, aliados a técnicas espectroscópicas, como a espectroscopia na região do 

infravermelho médio e de fluorescência molecular, na detecção de microrganismos 

patógenos: fungos e bactérias. Os primeiros estudos, buscavam a diferenciação de 

Cryptococcus neoformans e Cryptococcus gatti. Estes fungos são os agentes 

etiológicos da criptococose, cujo tratamento adequado depende da detecção e 

diferenciação rápida e correta da espécie. Esta identificação é atualmente feita por 

técnicas clássicas e moleculares, que em sua maioria são trabalhosas e dispendiosas. 

Como método alternativo para discriminar C. gattii e C. neoformans, foi investigada 

inicialmente a espectroscopia no infravermelho médio por reflectância total atenuada, 

aliada a técnicas de classificação multivariada (PCA-LDA/QDA, GA-LDA/QDA, SPA-

LDA/QDA), no qual o modelo GA-QDA obteve sensibilidade nas classes C. neoformans 

e C. gatti de 84,4% e 89,3%, respectivamente, utilizando apenas 17 números de onda. 

Em seguida, foi utilizada a espectroscopia de fluorescência em matriz excitação-

emissão (EEM), combinada com métodos de classificação multivariada (UPCA-

LDA/QDA, UGA-LDA/QDA, USPA-LDA/QDA, PARAFAC/PLS-DA, nPLS-DA). O modelo 

mais satisfatório foi o UGA-LDA, que utilizou apenas 5 comprimentos de onda, e 

apresentou sensibilidade de 88,9% em calibração e 100,0% de previsão para ambas as 

espécies, resultados que são comparáveis aos testes biológicos de rotina. O último 

estudo visava a diferenciação de bactérias sensíveis e multirresistentes do gênero 

Klebsiella sp. e Escherichia coli. Através da espectroscopia de fluorescência molecular 

e os métodos de classificação multivariada LDA, QDA e SVM acoplados a algoritmos 

de redução de dados PCA, GA e SPA.  Dentre estes, os modelos que tiveram melhores 

desempenho para ambos os gêneros de bactéria, apresentaram taxas de sensibilidade 

e especificidade de 100%. Em comparação com os métodos clássicos, as metodologias 

propostas nestes estudos demonstram ser uma alternativa inovadora, mais rápida e 

barata para a identificação de microrganismos patógenos, como fungos e bactérias, 

abrindo a possibilidade de aplicação em laboratórios de diagnósticos de rotina. 

 

Palavras-chave: FT-IR, Fluorescência, Análise Multivariada, Cryptococcus, Klebsiella 

sp. e Escherichia coli. 

  



ABSTRACT 

 

This paper presents the development of multivariate classification methods, 

combined with spectroscopic techniques, such as spectroscopy in the middle infrared 

region and molecular fluorescence, in the detection of pathogenic microorganisms: fungi 

and bacteria. The first studies sought the differentiation of Cryptococcus neoformans and 

Cryptococcus gattii. These fungi are the etiological agents of cryptococcosis, whose 

proper treatment depends on the rapid and correct detection and differentiation of the 

species. This identification is currently done by classical and molecular techniques, 

which are mostly laborious and expensive. As an alternative method to discriminate C. 

gattii and C. neoformans, we initially investigated medium infrared spectroscopy by 

attenuated total reflectance, together with multivariate classification techniques (PCA-

LDA/QDA, GA-LDA/QDA, SPA-LDA/QDA), in which the GA-QDA model obtained 

sensitivity in classes C. neoformans and C. gattii of 84.4% and 89.3%, respectively, using 

only 17 wave numbers. Then, fluorescence spectroscopy in excitation-emission matrix 

(EEM) was used, combined with multivariate classification methods (UPCA-LDA/QDA, 

UGA-LDA/QDA, USPA-LDA/QDA, PARAFAC/PLS-DA, nPLS-DA). The most 

satisfactory model was the UGA-LDA, which used only 5 wavelengths, and showed 

sensitivity of 88.9% in calibration and 100.0% prediction for both species, results that are 

comparable to routine biological tests. The last study aimed to differentiate sensitive and 

multi-resistant bacteria of the genera Klebsiella sp. and Escherichia coli. Through 

molecular fluorescence spectroscopy and multivariate classification, methods LDA, QDA 

and SVM coupled with data reduction algorithms PCA, GA and SPA.  Among these, the 

models with the best performance for both types of bacteria presented sensitivity and 

specificity rates of 100%. Compared to the classical methods, the methodologies 

proposed in these studies proved to be an innovative, faster and cheaper alternative for 

the identification of pathogenic microorganisms, such as fungi and bacteria, opening the 

possibility of application in routine diagnostic laboratories.  

Keywords: FT-IR, Fluorescence, Multivariate Analysis, Cryptococcus, Klebsiella sp. and 

Escherichia coli. 
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1 Organização da tese 

Esta tese foi organizada em capítulos, que correspondem aos trabalhos 

desenvolvidos como primeira autora, em parceria com pesquisadores do Instituto de 

Medicina Tropical/UFRN, Hospital Gizelda Trigueiro/Natal/RN, Departamento de 

Microbiologia e Parasitologia/UFRN. Nos apêndices são apresentados os diferentes 

trabalhos realizados em colaborações, desenvolvidos ao longo deste doutoramento. 

CAPÍTULO 2 – “Attenuated total reflection Fourier transform infrared (ATR-FTIR) 

spectroscopy as a new technology for discrimination between Cryptococcus neoformans 

and Cryptococcus gattii.” (Publicado no periódico Analytical Methods, DOI: 

10.1039/C6AY01893A). Relata uma aplicação de espectroscopia no infravermelho 

médio e algoritmos de classificação multivariada (PCA-LDA/QDA, SPA-LDA/QDA e GA-

LDA/QDA) na diferenciação dos fungos C. neoformans e C. gattii. Como uma alternativa 

mais rápida para auxiliar o diagnóstico. 

CAPÍTULO 3 – “Comparison of multivariate classification algorithms using EEM 

fluorescence data to distinguish Cryptococcus neoformans and Cryptococcus gattii 

pathogenic fungi.” (Publicado no periódico Analytical Methods, DOI: 

10.1039/c7ay00781g). Relata uma aplicação de espectroscopia de fluorescência 

molecular e algoritmos de classificação multivariada de primeira e segunda ordem 

(UPCA-LDA/QDA, UGA-LDA/QDA, USPA-LDA/QDA, PARAFAC-LDA/QDA, UPLS-DA 

e nPLS) na otimização da diferenciação dos fungos C. neoformans e C. gattii. A técnica 

foi escolhida visando um aumento na sensibilidade e especificidade na classificação 

entre as duas espécies de Cryptococcus. 

CAPÍTULO 4 – “Identification of resistance in Escherichia coli and Klebsiella 

pneumoniae using E. E. M. fluorescence Spectroscopy and multivariate analysis.” 

(Manuscrito em fase de escrita). Relata uma aplicação de espectroscopia de 

fluorescência molecular e algoritmos de classificação multivariada (2D-LDA, 2D-PCA-

LDA, 2D-PCA-QDA, 2D-PCA-SVM, UPCA-LDA/QDA, UGA-LDA/QDA, USPA-



LDA/QDA) na identificação de resistência e sensibilidade em duas espécies de bactérias 

E. coli e K. pneumoniae. Como um método alternativo para a detecção de resistência 

bacteriana, que possa ser utilizado nas análises de rotina laboratoriais e tornar o 

tratamento mais eficaz. 

CAPÍTULO 5 – Conclusões e Perspectivas: neste capítulo são apresentados 

resumidamente os principais resultados alcançados nesses estudos. As principais 

contribuições de cada metodologia proposta e as perspectivas para futuros trabalhos. 

APÊNDICE A – “Variable selection with a support vector machine for 

Discriminating Cryptococcus fungal species based on ATR-FTIR spectroscopy.” 

(Publicado no periódico Analytical Methods, DOI: 10.1039/c7ay00428a). Relata a 

aplicação de diferentes tipos de algoritmos de redução de dados e variáveis ao SVM 

com diferentes funções kernel na distinção de C. gattii e C. neoformans baseados na 

espectroscopia ATR-FTIR. 

APÊNDICE B – “On the synergy between silver nanoparticles and doxycycline 

towards the inhibition of Staphylococcus aureus growth.” (Publicado no periódico RSC 

Advances, DOI: 10.1039/c8ra02176g). Relata o estudo de discriminação das respostas 

metabólicas de bactérias S. aureus tratadas com NanoAg, doxiciclina e com o 

combinado NanoAg/doxiciclina com a finalidade de confirmar o efeito sinérgico da ação 

combinada entre a doxiciclina e as nanopartículas de prata. 

APÊNDICE C – “The Use of Near Infrared Spectroscopy and Multivariate 

Calibration for Determining the Active Principle of Olanzapine in a Pharmaceutical 

Formulation.” (Publicado no periódico Journal of the Brazilian Chemical Society, DOI: 

10.21577/0103-5053.20160233). Relata a determinação quantitativa de olanzapina em 

formulação farmacêutica utilizando a espectroscopia de infravermelho próximo (NIR) 

combinada com regressão por mínimos quadrados parciais (PLS). 

APÊNDICE D – “A Multivariate Control Chart Approach for Calibration Transfer 

between NIR Spectrometers for Simultaneous Determination of Rifampicin and Isoniazid 

in Pharmaceutical Formulation.” (Publicado no periódico Current Analytical Chemistry, 

DOI: 10.2174/1573411014666171212141909). Relata uma abordagem de transferência 

de cartas de controle multivariadas entre dois espectrômetros de infravermelho próximo 

(NIR) usando Padronização Direta, para a determinação de teor de rifampicina e 

isoniazida em formulações farmacêuticas. 
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2 Introdução 

Mesmo com todo o avanço na medicina, as doenças infecciosas ainda são uma 

grande ameaça, inclusive aos países desenvolvidos [1]. Estas doenças podem ser 

transmitidas ao homem através de vírus, protozoários, bactérias, fungos, dentre outros 

e podem se espalhar, direta ou indiretamente, de uma pessoa para outra. Nos últimos 

anos, tem sido observado em vários países, que os grandes centros urbanos vêm 

apresentando um aumento nos números de casos de enfermidades infectocontagiosas 

[2], o que torna este tema de grande relevância social. 

A maioria dos patógenos que causam essas doenças possuem caráter 

oportunista, tendendo a acometer com frequência, pacientes recém transplantados e 

portadores de HIV (Vírus da Imunodeficiência Humana) [3,4], que constituem uma 

grande parcela da população. Segundo os dados apontados pelo último boletim 

apresentado pela UNAIDS (Organização das Nações Unidas para AIDS), em 2017 cerca 

de 21,7 milhões de pessoas possuíam HIV (UNAIDS, 2018) [5]. Nestes pacientes, a 

manifestação de doenças infecciosas agrava o caso clínico e compromete o tratamento. 

Dentre as doenças infecciosas mais comuns em pacientes portadores de HIV, 

temos a criptococose cujos principais agentes causadores são o Cryptococcus 

neoformans e Cryptococcus gatti [6]. São fungos que apresentam diferenças com 

relação ao habitat natural, à epidemiologia, às características fenotípicas, às 

manifestações clínicas e à resposta a terapia antifúngica [7]. Conforme a Tabela 1, na 

qual estão listadas as principais diferenças entre estas duas espécies de fungos, C. 

neoformans é um patógeno oportunista que geralmente acomete indivíduos 

imunocomprometidos, enquanto C.gatti está ganhando destaque como uma das 

principais causas de doenças em pacientes imunocompetentes [8]. 

 

Tabela 1: Principais diferenças entre Cryptococcus neoformans e Cryptococcus gatti 

Cryptococcus gatti Cryptococcus neoformans 

Encontrado em meio campestre Encontrado em grandes centros urbanos 

Leveduras presentes em árvores em 

decomposição, nas regiões 

subtropicais e subtropicais 

Leveduras presentes nas fezes dos 

pombos e outras aves 

Acomete indivíduos imunocompetentes Acomete principalmente indivíduos 

imunossuprimidos 
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A criptococose é uma micose que se tornou muito comum a partir dos anos 80, 

em virtude do surgimento da AIDS [9]. A forma mais comum é a criptococose 

pulmonar, que se não controlada, pode levar a meningite criptocócica potencialmente 

fatal ou meningoencefalite [10]. A infecção se dá pela inalação dos basidiósporos ou 

blastoconídios, advindos, em geral, de matéria orgânica em decomposição, devido a 

sua natureza saprofítica. Quando inalados, os propágulos instalam-se nos alvéolos 

pulmonares, assumindo então sua forma leveduriforme (Fig. 1) [11,12].   

 

Figura 1: Representação do mecanismo de transmissão da criptococose. 

 

Fonte: Adaptada da Referência [12]. 

 

Atualmente, o diagnóstico da criptococose é feito por meio da pesquisa direta, 

na qual o líquor ou liquido céfalorraquidiano (LCR) é analisado ao microscópio ótico, em 

solução de tinta da china e por meio do cultivo em ágar Sabouraud. A diferenciação 

entre estas espécies pode ser feita utilizando o teste de CGB (canavanina-glicina-azul 

de bromotimol). Porém, esse teste demanda muito tempo, além de não apresentar 

confiabilidade de 100%, e por isso não é empregado de forma rotineira no diagnóstico 

da criptococose [13].  

Das bactérias que geralmente estão associadas ao cenário clínico, destacam-se 

a Klebsiella pneumoniae (K. pneumoniae) e a Escherichia coli (E. Coli), que são 

comumente fontes de infecções comunitárias e hospitalares. Ambas são bactérias 

gram-negativas, que fazem parte da família das Entereobactérias [14, 15]. K. 
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pneumoniae é a segunda causa mais comum de bacteremia gram-negativa, causa 

infecções oportunistas, como pneumonia, sepse e inflamação do trato urinário [16]. A 

Escherichia coli, que apesar de não ser tipicamente patogênica para humanos, pode 

causar várias doenças no trato gastrointestinal, no sistema renal e no sistema nervoso 

central [17]. 

O tratamento das doenças infecciosas causadas por bactérias enfrenta além da 

dificuldade de identificação do agente etiológico, um agravante que é a resistência 

bacteriana, que pode acontecer de forma natural ou adquirida. A resistência adquirida é 

a mais preocupante, uma vez que já foram descritas em praticamente todas as espécies 

de bactérias. Essa resistência está associada a capacidade que a bactéria tem de 

modificar sua estrutura celular e induzir a produção de substâncias capazes de 

neutralizar a ação de antibacterianos [18]. 

Nas enterobactérias, a principal resistência são aos carbapenêmicos [19]. Nas 

K. pneumoniae e E. coli, a susceptibilidade reduzida aos carbapenêmicos pode surgir 

por uma diminuição da permeabilidade da membrana externa devido à inativação ou 

expressão alterada de porinas em cepas que produzem β-lactamases com pelo menos 

alguma atividade hidrolítica contra os carbapenêmicos [20, 21]. 

A avaliação da resistência bacteriana é realizada através de testes nos quais 

uma cultura isolada é submetida a vários tipos de antibióticos. O perfil de sensibilidade 

bacteriana a antibióticos das cepas isoladas pode ser determinado pelo método de 

difusão em disco [22], Concentrações Inibitórias Mínimas (MIC) [23] ou Concentrações 

Bactericidas Mínimas (MBC) [24]. E o tempo de análise, em geral, leva de 24 a 48h.  

Metodologias que sejam capazes de fornecer a identificação de fungos e avaliar 

a resistência bacteriana de forma rápida, precisa e com a confiabilidade dos métodos 

de referência, são cada vez mais necessários. Neste sentido, as técnicas 

espectroscópicas, como a fluorescência molecular e a do infravermelho médio, têm tido 

grande destaque nos últimos anos na área microbiológica, uma vez que, são técnicas 

rápidas, de custo relativamente baixo, não-destrutivas, que necessitam de pouca ou 

nenhuma manipulação da amostra, além da não utilizarem reagentes e/ou solventes. 

Se baseiam na interação da radiação com os grupos químicos que estão presentes nas 

amostras, através da medida da quantidade de radiação produzida ou absorvida pelas 

moléculas ou espécies atômicas de interesse [25].  

Apesar das grandes vantagens das técnicas espectroscópicas, a seletividade 

pode ser prejudicada devido à grande sobreposição espectral ou presença de 

interferência da matriz. Para superar esses obstáculos, ferramentas quimiométricas 

podem ser utilizadas, para maximizar a extração de informações relevantes [26]. Os 



14 

 

métodos de reconhecimento de padrões supervisionados e não supervisionados são 

comumente aplicados para extrair características espectrais e desenvolver modelos de 

classificação [27]. Entre os métodos de monitoramento supervisionado, podemos 

destacar a Análise Discriminante Linear (LDA) [28], Análise Discriminante Quadrática 

(QDA) [29], acoplados a métodos de redução de dados, como a Mínimos Quadrados 

Parciais [30], Análise de Componentes Principais (PCA) [31], Análise de Fatores 

Paralelos (PARAFAC) [32], Algoritmo Genético (GA) [33] e o Algoritmo de Projeções 

Sucessivas (SPA) [34].  

A detecção dos patógenos causadores dessas doenças é fundamental para 

garantir uma intervenção correta e eficaz ao tratamento do paciente, quanto mais rápido 

e de forma segura for feita a identificação, mais chances de sucesso tem o tratamento 

da enfermidade. Por esse motivo, há um grande interesse em metodologias que 

melhorem os métodos de detecção atuais, particularmente em questões relacionadas 

com a rapidez no diagnóstico. 

 

2.1 Técnicas Instrumentais 

2.1.1 Espectroscopia no infravermelho Médio  

A espectroscopia no Infravermelho Médio é um método de análise largamente 

utilizada em muitas áreas da ciência e tecnologia [35]. A técnica consiste em incidir 

sobre uma amostra um feixe de radiação na faixa de 400 a 4000 cm-1, de modo que as 

vibrações permitidas que provoquem alteração no dipolo da molécula, promoverão uma 

absorção de energia incidente em frequências específicas, gerando um espectro de 

infravermelho [25].  

Os espectrômetros mais modernos, em sua grande maioria, são acoplados a um 

siatema óptico que associados à cálculos matemáticos, conhecidos como Transformada 

de Fourier, convertem o sinal analítico no domínio do tempo para um sinal no domínio 

das frequências [36]. A vantagem de usar a Transformada de Fourier com o 

infravermelho é que é possível obter dezenas de interferogramas para uma mesma 

amostra em menos de um segundo, e através do cálculo da média gerar um espectro 

com alta razão sinal/ruído [37]. 

A aplicação de acessórios de Reflectância Total Atenuada (ATR) no instrumento 

convencional de espectroscopia FTIR permite obter espectros de forma estável, 

robusta, não destrutiva e com mínima ou nenhuma preparação de amostras, uma vez 

que estas podem ser posicionadas diretamente sobre o cristal de ATR [38]. A 
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reflectância total é um caso especial de reflexão de uma onda eletromagnética em uma 

interface entre dois meios, como mostrado na Figura 2. 

 

Figura 2: Processo de reflectância total atenuada 

 

Fonte: Autor 

 

Na espectroscopia ATR-FTIR, o raio infravermelho entra no cristal ATR a 45° em 

relação à superfície do cristal e é totalmente refletido na interface de cristal para 

amostra. A profundidade de penetração depende do comprimento de onda, dos índices 

de refração do cristal ATR e da amostra, bem como do ângulo da luz incidente. A onda 

evanescente é uma fração da luz que atingiu a amostra, que é atenuada nas regiões 

espectrais, onde a amostra absorve energia. Após um ou vários reflexos internos, o feixe 

IR sai do cristal ATR e é direcionado para o detector IR [39]. 

A espectroscopia FTIR é adequada para ser empregada em estudos biológicos, 

porque possui a capacidade de diferenciar substâncias orgânicas complexas, sendo 

utilizada para tanto para a classificação, quanto para quantificação [40]. No espectro de 

infravermelho médio, existe uma região chamada de impressão digital bioquímica [41], 

na qual as bandas espectrais podem ser correlacionadas com a presença/ausência de 

características estruturais das amostras estudadas [42]. Algumas estruturas presentes 

nas células podem ser caracterizadas por algumas absorções, correspondentes a 

ligações químicas que apresentam regiões de absorção e bandas espectrais específicas 

atribuídas, como por exemplo, lipídios (≈1750 cm-1), carboidratos (≈1155 cm-1), estrutura 

secundárias de proteínas (amida primária ≈1650 cm-1; amida secundária ≈1550 cm-1) e 

DNA/RNA (≈1225 cm-1; ≈1080 cm-1) [43,44].  

Os dados fornecidos por técnicas como a espectroscopia FTIR carregam muitas 

informações. Diante desta necessidade de processar a grande quantidade de 

informações produzidas pelos instrumentos analíticos mais modernos, surgiu uma área 

da ciência, que faz uso de ferramentas estatísticas e matemáticas de análise 

multivariada que possibilita relacionar medidas de absorbância ou reflectância, por 

exemplo, com o estado ou propriedades físicas e químicas do sistema analisado [45]. A 
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espectroscopia FTIR aliada a análise multivariada foi empregada com sucesso no 

diagnóstico da infecção pelo HPV [46], rastreio de câncer [47,48], identificação de 

fungos [49] e bactérias [50].  

 

2.1.2 Espectroscopia de Fluorescência Molecular 

A fotoluminescência é um fenômeno em que as moléculas ou átomos absorvem 

radiação eletromagnética, passando para um estado excitado e que ao retornarem ao 

estado fundamental, liberam o excesso de energia na forma de fótons. A 

fotoluminescência divide-se em fluorescência e fosforescência, dependendo da 

natureza do estado excitado [51].  

Na fluorescência, o elétron envolvido na transição mantém sua orientação de 

spin no orbital excitado, se emparelhando com o elétron que está no orbital do estado 

fundamental, caracterizando o estado excitado singleto. A fosforescência ocorre com o 

estado excitado tripleto, quando o elétron no estado excitado, inverte a sua orientação 

de spin [52]. A Figura 3 apresenta o diagrama de Jablonsky que ilustra os processos de 

absorção e emissão de luz.  

 

Figura 3: Diagrama de Jablonski ilustrando resumidamente o fenômeno da luminescência. 

 

Fonte: Adaptada da Referência [51] 

Em estados excitados podem ocorrer vários processos moleculares de 

desativação. Através de colisões, as moléculas podem rapidamente perder energia e 

caírem para níveis vibracionais menos energéticos. No processo de conversão interna, 

moléculas que ocupam um estado excitado maior de S2 e S1 relaxam até o nível 
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vibracional mais baixo de S1. As transições que ocorrem de S1 para S0, constituem a 

fluorescência. O espectro de fluorescência é localizado em comprimentos de onda 

maiores (energia mais baixa) que o espectro de absorção, por causa da perda de 

energia no estado excitado devido à relaxação vibracional [51].  

Para que a fluorescência ocorra é necessário que as moléculas tenham 

estruturas apropriadas e estar em um meio que favoreça a desativação radiativa. São 

potencialmente fluorescentes as moléculas com estruturas relativamente rígidas e ricas 

em elétrons π, como as moléculas aromáticas, contendo ou não heteroátomos em sua 

cadeia principal [53].  

Entre as técnicas espectroscópicas, a fluorescência molecular tem grande 

destaque, pois é uma técnica analítica altamente sensível que permite medições em 

concentrações ambientais naturais, além de não ser destrutiva. Juntamente com isso, a 

fluorescência em matriz excitação-emissão (EEM, do inglês, Excitation-Emission Matrix) 

contém uma enorme quantidade de informações do analito, gerando um sinal 

abrangente contendo informações sobre todos os compostos fluorescentes dentro da 

amostra [54, 55]. Os componentes de sobreposição de fluorescência podem ser 

identificados de acordo com seus comprimentos de onda de excitação e emissão, que 

são capazes de identificar biomoléculas em amostras [56]. 

Apesar das grandes vantagens da espectroscopia de fluorescência EEM, a 

seletividade pode ser prejudicada devido à grande sobreposição espectral ou presença 

de interferência da matriz [57]. Neste sentido, as técnicas de análise de dados 

multivariadas podem decompor de forma confiável EEMs em componentes 

fluorescentes com variação independente, permitindo uma identificação mais precisa 

das substâncias [58], devido a possibilidade de classificar, sob certas condições, na 

presença de interferentes desconhecidos, que não estejam presentes no conjunto de 

treinamento, a chamada "vantagem de segunda ordem” [59, 60]. A combinação de 

análise multivariada e espectroscopia EEM foi bem-sucedida no estudo de hibridização 

de DNA [61], quantificação de colesterol [62] e rastreamento de câncer [63]. 

 

2.2 Análise Quimiométrica  

2.2.1 Análise de Componentes Principais (PCA) 

O método de compressão e extração de dados mais conhecido e utilizado é o 

PCA (do inglês, Principal Component Analysis) [31]. O PCA encontra uma combinação 

linear de variáveis, que descreve a maior variância dos dados. A matriz de dados original 

é decomposta em scores, matriz que contém a informação de como cada amostra se 
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correlaciona com as outras e nos loadings, que é a matriz que informa como cada 

variável se correlaciona com as demais. O PCA pode ser descrito com um número 𝑘 de 

componentes e a variância residual, não contemplada pelo modelo está relacionada ao 

erro [64], conforme a equação 1: 

 

𝑿 =  𝑻𝑷𝒕 + 𝑬                                                                                                      Equação 1 

 

Onde 𝑿  é a matriz espectral, 𝑻 e 𝑷 são as matrizes dos scores e loadings, 

respectivamente, e 𝑬 é a matriz dos resíduos. 

 

 Os dados originais são resolvidos em componentes ortogonais, cuja 

combinação linear aproxima-se dos dados originais. O novo conjunto de dados, os 

autovetores, chamados de componentes principais (PC, do inglês, Principal 

Components), correspondem aos maiores autovalores da matriz de covariância, assim, 

representando a maior variação possível no conjunto de dados. A primeira PC 

representa variação máxima entre todas as combinações lineares e as demais PCs o 

máximo de variabilidade restante possível [65]. 

O PCA pode ser utilizado como uma ferramenta de análise exploratória [66] ou 

como redutor de dimensionalidade [67] para ser acoplado à algoritmos de classificação 

em métodos supervisionados. 

 

2.2.2 Análise de Fatores Paralelos (PARAFAC) 

O algoritmo de análise de fatores paralelos (PARAFAC, do inglês, Parallel Factor 

Analysis) é considerada uma generalização do PCA bilinear [68], que se aplica em 

sistemas, em que cada amostra é constituída por uma matriz de dados. O PARAFAC é 

usado para decompor dados trilineares com uma única solução, permitindo estimativas 

robustas de perfis de excitação e emissão presentes nos espectros e suas 

concentrações [69], a chamada “vantagem de segunda ordem” [70].  

O PARAFAC pode ser utilizado em dados multidimensionais como os gerados 

pela fluorescência EEM. Cada amostra EEM constitui uma matriz de dimensão  𝑱 x 𝑲, 

onde 𝑱 são os comprimentos de onda de emissão e 𝑲 os comprimentos de onda de 

excitação. Ao agrupar 𝑰 matrizes de amostras forma-se um tensor de dados 𝑿, com as 

dimensões ( 𝑰 x 𝑱 x 𝑲) [71]. Através do PARAFAC, a decomposição de 𝑿 é obtida 

minimizando a soma dos quadrados dos resíduos 𝒆𝒊𝒋𝒌, conforme a Equação 2: 
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𝑿𝒊𝒋𝒌 =  ∑ 𝒂𝒊𝒇𝒃𝒋𝒇𝒄𝒌𝒇
𝑭
𝒇=𝟏 +  𝒆𝒊𝒋𝒌                                                                             Equação 2 

 

Em que 𝑭 é o número de fatores, 𝒆𝒊𝒋𝒌 é o erro residual que tem as mesmas 

dimensões da matriz 𝑿, os vetores colunas 𝒂𝒊𝒇,  𝒃𝒋𝒇 e 𝒄𝒌𝒇 estão contidos em matrizes 

de scores e loadings A, B e C, respectivamente [72]. 

Os dados decompostos provenientes do PARAFAC podem ser usados para 

construir os modelos de classificação, utilizando algum algoritmo de análise 

discriminante. Além disso, a seleção de recursos ou uma seleção reduzida pelo uso do 

pré-processamento em um conjunto de variáveis latentes podem melhorar a 

classificação [73]. 

 

2.2.3 Seleção de variáveis: Algoritmo de Projeções Sucessivas (SPA) e Algoritmo 

Genético (GA) 

As técnicas instrumentais mais modernas possibilitam a aquisição de muitos 

dados por amostra, o que torna o tratamento desses dados muito complexo. Além de 

nem todas as variáveis serem relevantes para a construção dos modelos. Neste sentido, 

métodos de redução de dados que encontrem subconjuntos de variáveis mais 

relevantes, podem incrementar o desempenho dos modelos [74]. 

O algoritmo das Projeções Sucessivas (SPA, do inglês, Successive Projections 

Algorithm) é um método de seleção de variáveis, inicialmente desenvolvido para 

aplicação em métodos de regressão [34], tendo sido posteriormente ampliado para 

aplicação também em modelos de classificação [75]. O SPA seleciona as variáveis 

menos colineares, realizando uma série de projeções para redução do espaço de busca 

e selecionando aquelas que possuem o valor de projeção máxima, dentre todas as 

variáveis do espaço sub-ortogonal das variáveis previamente selecionadas [76].  

Em comparação com outros algoritmos, o SPA apresenta vantagens em termos 

de simplicidade e facilidade de interpretação dos dados. Entretanto, apresenta algumas 

limitações, uma vez que é afetado pela baixa razão sinal/ruído e nesses casos, acabar 

selecionando amostras que não são relevantes [77]. 

O Algoritmo Genético (GA, do inglês, Genetic Algorithm) é uma técnica heurística 

popular de otimização probabilística que emprega o processo de pesquisa não-local, 

inspirado na teoria da seleção natural de Darwin [33], visando encontrar as variáveis 

que se encaixam melhor nas equações que serão passadas para o modelo da próxima 

geração [78]. 
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Incialmente, o GA seleciona uma população aleatória de indivíduos, que terão 

suas aptidões avaliadas. Em seguida, são selecionados pares de indivíduos a serem 

cruzados, posteriormente submetidos a uma mutação. Os indivíduos são substituídos 

pela nova geração, em um ciclo que é repetido até que se encontre um conjunto de 

variáveis que promovam a melhor classificação dos dados, com uma função de menor 

custo [79]. 

As principais vantagens do GA é que ele independe da complexidade da 

estrutura do problema, e não se restringe a uma solução ótima local. Podendo ser 

utilizado tanto em modelos de regressão quanto de classificação [80]. Devido à natureza 

aleatória do GA, múltiplas execuções do algoritmo geram diferentes resultados afetando 

a reprodutibilidade. Além disso, em problemas com o espaço de busca suave, ou seja, 

com pouca correlação entre as variáveis, o GA pode não encontrar os melhores ótimos 

locais [81]. 

 

2.2.4 Análise discriminante 

A análise discriminante é um método supervisionado em que funções de 

variáveis observadas são usadas para classificar as observações em grupos 

designados.  A análise discriminante linear (LDA, do inglês, Linear Discriminant 

Analysis) é o método mais comumente utilizado [82]. No LDA, as densidades de 

probabilidade de classe condicional são consideradas como distribuições multivariadas 

normais, com diferentes vetores médios para cada classe, em que as matrizes de 

covariância são idênticas para todas os grupos [83].  

A função limite para o LDA é mostrada na Equação 3 onde 𝒌 é uma constante; 

𝒍𝟏 e 𝒍𝟐 são os coeficientes lineares entre as observações (𝒙) das classes 1 e 2, 

respectivamente. 

 

𝒇𝑳𝑫𝑨(𝒙𝟏, 𝒙𝟐) = 𝒌 + 𝒍𝟏𝒙𝟏 + 𝒍𝟐𝒙𝟐                                                 Equação 3 

 

Nos casos em que as classes possuem covariância diferente é recomendado a 

análise discriminante quadrática (QDA, do inglês, Quadratic Discriminant Analysis) [69]. 

A classificação do QDA, difere-se do LDA, porque leva em consideração também os 

determinantes das matrizes de dispersão [29]. O QDA discrimina grupos que possuem 

matrizes de covariância de classes específicas significativamente diferentes e forma um 

modelo de variância separado para cada classe, enquanto as populações de classes 

representam distribuições normais multivariadas com a mesma média [84].  
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A função limite para o QDA é mostrada na Equação 4 onde 𝒌 é uma constante; 

𝒍𝟏 e 𝒍𝟐 são os coeficientes lineares entre as observações (𝒙) das classes 1 e 2, 

respectivamente; 𝒒𝟏 e 𝒒𝟐 são os coeficientes quadráticos entre as observações da 

classe 1 e 2, respectivamente. 

 

𝒇𝑸𝑫𝑨(𝒙𝟏, 𝒙𝟐) = 𝒌 + 𝒍𝟏𝒙𝟏 + 𝒍𝟐𝒙𝟐 + 𝒒𝟏𝒙𝟏
𝟐 + (𝒒𝟏 + 𝒒𝟐)𝒙𝟏𝒙𝟐 + 𝒒𝟐𝒙𝟐

𝟐          Equação 4 

 

A Figura 4 ilustra as funções limite LDA e QDA para discriminação de dois 

conjuntos de dados, utilizando as Equações 3 e 4. 

 

Figura 4. Exemplo de funções limite LDA e QDA para discriminação de duas classes: (●) 

classe 1 e (●) classe 2. 

 

Fonte: Autor 

 

2.2.5 Máquinas de Vetores Suporte (SVM) 

O algoritmo Máquinas de Vetores Suporte (SVM, do inglês, Support Vector 

Machines) é uma técnica de aprendizado de máquina, que pode ser utilizada para a 

construção de modelos de classificação [85]. O princípio básico do SVM consiste em 

encontrar um hiperplano ótimo de separação intermediário entre duas classes de dados, 

seguindo o princípio da margem máxima [86].  

Entre os métodos existentes de classificação, O SVM fornece vantagens 

importantes, como generalização adequada para novas amostras, ausência de mínimos 

locais e uma representação que depende apenas de alguns parâmetros [87,88]. O SVM 

foi originalmente criado para lidar com classificações binárias [89], entretanto a maior 
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parte dos problemas reais requerem múltiplas classes. Para se utilizar um SVM em 

classificações de múltiplas classes, é necessário transformar o problema multiclasse em 

vários problemas de classes binárias. Por isso, o tempo de treinamento pode ser bem 

longo, dependendo do número de amostras e da dimensionalidade dos dados [90]. 

2.2.6 Análise Discriminante por Mínimos Quadrados Parciais (PLS-DA) 

Uma análise discriminante por mínimos quadrados parciais (PLS-DA, do inglês, 

Partial Least Squares Discriminant Analysis) é uma variação do método de regressão 

por mínimos quadrados parciais (PLSR), para utilização em modelos de classificação 

[91]. O PLS-DA se baseia na redução do tamanho dos dados originais (X) e substituí-

los pela matriz de scores e loadings, maximizando a covariância entre a matriz espectral 

X e a matriz de resposta das classes (Y). O nível de redução é descrito pelo número de 

variáveis latentes significativas (VL) [92].  

O PLS-DA apresenta algumas vantagens frente a outros algoritmos de redução 

de dimensionalidade, como por exemplo o PCA, que tenta descrever a variação máxima 

com o menor número possível de componentes, sem necessariamente levar à 

separação das duas classes entre si. Por ser um método supervisionado, o PLS-DA 

encontra a separação máxima entre cada classe mais efetivamente, uma vez que se 

baseia na designação de classes, o que permite encontrar padrões nos dados [93, 94]. 

 

3 Objetivos 

3. 1 Objetivo geral 

Avaliação da Espectroscopia no infravermelho médio e de fluorescência 

molecular em conjunto com métodos de classificação multivariada para rápida 

identificação de fungos e resistência de bactérias causadoras de doenças infecciosas. 

 

3.2 Objetivos específicos 

 Diferenciação dos fungos Cryptococcus neoformans e Cryptococcus gattii 

através de modelos de classificação multivariada, espectroscopia ATR-FTIR e 

fluorescência molecular. 

 Comparação do desempenho de métodos de classificação de primeira e 

segunda ordem. 

 Identificação de resistência em Escherichia coli e Klebsiella pneumoniae, por 

meio de espectroscopia de fluorescência molecular e classificação multivariada. 
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 Validação das metodologias propostas por meio do cálculo de figuras de mérito 

de classificação tais como sensibilidade, especificidade, PPV, NPV e index You. 

 

4 Metodologia  

4.1 Preparo das amostras  

4.1.1 Fungos  

Foram utilizadas culturas fúngicas C. gatti e C. neoformans da coleção particular 

do Laboratório de Micologia Médica e Ambiental (LAMEA-UFRN), do Hospital das 

Clínicas e Hospital Veterinário da UNESP, campus de Botucatu (SP), isolado de 

referência Fio Cruz e isolados recentes do Hospital Giselda Trigueiro (Natal – RN). Estes 

fungos foram cultivados em meio de cultura Ágar Sabouraud e incubados durante 48 

horas a uma temperatura de 37°C, até o crescimento.  

Depois do crescimento das amostras foi feito um repique nas placas de Ágar, 

para manter a viabilidade do fungo. Em 28 tubos de ensaio foram adiconados 1,0 mL de 

tampão fosfato (1 mol/L), que foram colocados em um autoclave para esterilização. Foi 

feita a transferência de parte do isolado original para estes tubos de ensaios. Em 

seguida, os tubos de ensaio foram armazenados na estufa a uma temperatura de 

aproximadamente 37°C durante quatro dias para o crescimento do fungo.  

Após o crescimento, as células de levedura foram inativadas por meio de uma 

solução de paraformaldeído, para promover a biossegurança na manipulação. Depois 

lavados com solução salina e armazenados numa geladeira até a coleta dos espectros.  

  

4.1.2 Bactérias  

As amostras usadas foram: E. coli ATCC 25922 - Cepa padrão, E. coli CCHB 

NDM+, E. coli CCHB ampC 7018, K. pneumoniae ATCC 1003, K pneumoniae CCBH 

4955 KPC e K pneumoniae CCBH 6633 resistente a carbapenêmicos. As cepas CCBH 

foram obtidas do Laboratório de Pesquisa em Infecção Hospitalar (LAPIH - Fiocruz/RJ). 

As cepas ATCC pertencem ao LABMIC/DMP – UFRN. Inicialmente as amostras puras 

foram repicadas no meio de cultura BHI, e então foram mantidas na estufa por 24 horas 

a 38°C, para que a bactérias se multiplicassem. A amostra foi então repicada em uma 

placa de petri, que também foi mantida na estufa por 24 horas. Finalmente, a massa 

bacteriana correspondente a aproximadamente 106 unidades de formação de colônia 
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(UFC) foi transferida de um meio de cultura para um tubo Falcon com 2 mL de solução 

tampão de fosfato (1mol/L).  

  

4.2 Aquisição de dados  

4.2.1 Espectroscopia ATR-FTIR  

Espectros ATR-FTIR das amostras de C. gatti e C. neoformans foram medidos 

usando um espectrofotômetro modelo Bruker FT-IR, VERTEX 70 de laboratório 

LAMMEN. O instrumento foi configurado para executar um total de 16 varreduras, 

resolução de 4 cm-1, na faixa de 400-4000 cm-1, no modo de absorbância. Foram 

medidas 10 réplicas de cada amostra, para garantir a cobertura de toda a variabilidade 

amostral. Uma gota de 50 µL foi colocada diretamente no detector, e sobre a amostra, 

um pedaço de papel alumínio com a porção fluorescente virada para baixo, a fim de 

minimizar a propagação de radiação. O cristal ATR foi limpo com álcool a 70% v/v e um 

novo background foi coletado antes da leitura de uma nova amostra.  

  

4.2.2 Espectroscopia de Fluorescência Molecular  

4.2.2.1 Fungos  

Os dados de fluorescência de excitação/emissão para as espécies de C. gatti e 

C. neoformans foram adquiridos na faixa de comprimento de onda de 220-320 nm para 

excitação e 250-900 nm para emissão, com passos de 10 e 1 nm para excitação e 

emissão, respectivamente. Foi utilizado um espectrofluorímetro RF-

5301 Shimadzu com uma cubeta de quartzo de 0,5 mm. As larguras das fendas de 

excitação e emissão de monocromadores foram fixadas a 5 nm, a velocidade de 

varredura foi ajustada para o modo super (3000nm/min), o tubo fotomultiplicador foi 

ajustado para o nível médio e uma célula com uma sonda de reflectância de fibra óptica 

foi utilizada. Um total de 500μl de solução salina com células fúngicas foi adicionado à 

cubeta de fluorescência para leitura. Após cada leitura a cubeta foi lavada com uma 

solução de álcool a 70% e em seguida com água destilada para evitar contaminação 

entre amostras de fungos. A temperatura foi mantida a 25ºC (+/- 2ºC) ao longo dos 

experimentos.  
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 4.2.2.2 Bactérias  

Os dados de fluorescência de excitação/emissão para os dados de E. coli e K. 

pneumoniae foram adquiridos na faixa de comprimento de onda de 220-310 nm para 

excitação e 270-900 nm para emissão, com passos de 10 e 1 nm para excitação e 

emissão, respectivamente. Foi utilizado um espectrofluorímetro RF-

5301 Shimadzu com uma cubeta de quartzo de 0,5 mm. As larguras das fendas de 

excitação e emissão de monocromadores foram configuradas para 3 

e 5 nm, respectivamente. A velocidade de varredura foi ajustada para o 

modo super (3000nm/min), o tubo fotomultiplicador foi ajustado para o nível médio e 

uma célula com uma sonda de reflectância de fibra óptica foi utilizada. Foram coletadas 

cinco réplicas das concentrações de 1x106 UFC/ml, 5x105 UFC/ml, 1,3x105 UFC/ml, 

6,3x104 UFC/ml e 3,1x104 UFC/ml.  

  

4.3 Análise Computacional  

Os pré-processamentos espectrais e modelos de classificação multivariada 

foram feitos utilizando o software MATLAB R2011a (The Math-Works, Natick, EUA), e o 

pacote PLS-toolbox (Eigenvector Research, Inc., Wenatchee, WA, EUA). Os pré-

processamentos espectrais realizados nos dados de espectroscopia FTIR foram: um 

corte na região 900-1800 cm-1 e normalização pelo pico da amida I (≈ 1650 cm-1). Para 

os dados de fluorescência molecular, foi feita a remoção de dispersões Rayleigh e 

Raman usando o algoritmo 'EEMscat' e cortes nas matrizes de emissão. 

Para a construção de modelos de classificação, as amostras foram divididas em 

conjuntos de calibração, validação e previsão usando o algoritmo de seleção de 

amostras Kennard-Stone (KS).  

Os modelos de classificação de padrões utilizados foram: Análise de 

Discriminante Linear, Análise de Discriminante Quadrática e Máquinas de Vetores 

Suporte, acoplados a algoritmos de redução de dimensionalidade, como a Análise de 

Componentes Principais e dos algoritmos de seleção de variáveis como o Algoritmo 

Genético (GA) e Algoritmo das Projeções Sucessivas (SPA). Além disso, investigou-se 

os modelos PARAFAC, PLS-DA e nPLS-DA. 

Por fim, para a validação do método analítico foram calculadas alguns 

parâmetros de desempenho analítico, tais como: sensibilidade, especificidade, VPP, 

VPN, LR (+), LR (-).  
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Attenuated total reflection Fourier transform-
infrared (ATR-FTIR) spectroscopy as a new
technology for discrimination between
Cryptococcus neoformans and Cryptococcus gattii

Fernanda S. L. Costa,a Priscila P. Silva,a Camilo L. M. Morais,a Thales D. Arantes,b

Eveline Pipolo Milan,c Raquel C. Theodoro*b and Kássio M. G. Lima*a

Systemic fungal infections are among the most difficult diseases to manage in humans, especially when the

recognition of the correct species is required for a precise and successful treatment. This is the case for

Cryptococcus species and its genotypes, which are the main cause of meningitides in

immunocompromised patients. Attenuated total reflection Fourier transform-infrared (ATR-FTIR)

spectroscopy with discriminant analysis was employed to distinguish between the pathogenic fungal

species Cryptococcus neoformans and Cryptococcus gattii by determining which wavenumber–

absorbance/intensity relationships might reveal biochemical differences. Cryptococcus inactivated

colonies were applied to an ATR crystal, and vibrational spectra were obtained in the ATR mode. Twenty-

eight Cryptococcus isolates, fourteen C. neoformans and fourteen C. gattii were investigated. Spectral

categories were analyzed using principal component analysis (PCA), successive projection algorithm (SPA)

and genetic algorithm (GA) followed by linear discriminant analysis (LDA) and quadratic discriminant

analysis (QDA). Multivariate classification accuracy results were estimated based on sensitivity, specificity,

positive (or precision) and negative predictive values, Youden index, and positive and negative likelihood

ratios. Sensitivity for C. neoformans and C. gattii categories were 84.4% and 89.3%, respectively, using

a QDA-LDA model with 17 wavenumbers with respect to their “fingerprints”. Compared to classical

methods for differentiation of Cryptococcus species, this new technology could represent an alternative

and innovative tool for faster and cheaper fungal identification for routine diagnostic laboratories.

Introduction

Cryptococcus genus is widely distributed in nature, but only two
species, Cryptococcus neoformans and Cryptococcus gattii, are
frequent human pathogens,1 which infect the host on inhala-
tion of viable propagules from environmental sources (usually
pigeon feces and vegetal material).2 Cryptococcosis may be
opportunistic, most oen caused by C. neoformans, or a primary
disease affecting immunocompetent individuals, mainly
caused by C. gattii. Meningoencephalitis is the most common
clinical feature,3 but there may also be pulmonary involvement,
similar to tuberculosis and histoplasmosis.4

Conventional diagnosis of cryptococcosis is based on the
direct visualization of encapsulated yeast with India ink or an

isolated culture, which is fast compared to other more fastidious
fungi. However, identifying the species in this case is as impor-
tant as identifying the genus. This can be done by using molec-
ular markers or a CGB (bromothymol blue canavanine-glycine)
medium, in whichC. gattii changes its color from yellow to blue.5,6

However, despite its high sensitivity (about 93%), CGB identi-
cation is laborious. Its reading takes at least 48 hours and it can
have a subjective interpretation, since some C. gattii isolates do
not completely change from yellow to blue. In addition, other
yeast species can also change the color of the medium.7

Several molecular techniques have been applied for the
epidemiological study of cryptococcosis, including karyotyping,
RAPD (random amplication of polymorphic DNA), RFLP
(restriction fragment length polymorphism), AFLP (amplied
fragment length polymorphism), PCR (polymerase chain reac-
tion) using specic primer regions of minisatellite or micro-
satellite sequences, MLST (multi locus sequencing type) and
PCR-RFLP of the URA5 gene.8–12 Thus, C. neoformans was divided
into four genotypes: VNI (serotype A), VNII (serotype A), VNIII
(serotype AD) and VNIV (serotype D). C. gattii was divided into
VGI, VGII, VGIII and VGIV (serotypes B and C).
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Correct species identication and genotyping of C. neofor-
mans and C. gattii isolates is of utmost importance, as there are
differences in antifungal susceptibility among genotypes. Clin-
ical data suggest that the response to antifungal therapy is less
signicant in infections caused by C. gattii, requiring more
prolonged therapy.13 Additionally, it was found that C. gattii
VGII isolates are less susceptible to antifungal drugs (particu-
larly azole), followed by VGI, VNI and VNIV isolates.14–17

Although PCR is considered a good alternative option for
fungal molecular diagnostics due to its high specicity and
sensitivity, it has some technical limitations due to protocol
complexities, reagent costs and the choice of specic primers
for each species. Accordingly, it is necessary to improve current
detection methods, particularly for issues related to saving
time, effort and cost.

One interesting alternative to molecular methods in micro-
biology is FTIR spectroscopy, which has been studied over the
past decade for microbial identication.18–20 However, the
application of FTIR as bioanalytical spectroscopy to study
fungal bacteria is a relatively new frontier. Infrared spectros-
copy is a form of vibrational spectroscopy which provides
“whole biochemical ngerprinting” by means of spectral
features corresponding to a wide range of important functional
groups (lipids � 1750 cm�1, carbohydrates � 1155 cm�1,
primary amide� 1650 cm�1, secondary amide� 1550 cm�1 and
DNA/RNA � 1225 cm�1; � 1080 cm�1),19 that together could
provide important information about the biochemical constit-
uents of each fungal pathogen and also would identify and
discriminate fungal bacteria at a species or strain level.

Nonetheless, data analysis is a critical aspect of any diag-
nostic assay, particularly for IR spectroscopy. The major diffi-
culties in the analysis of microbial species and subspecies are as
follows: (i) spectrochemical studies generate complex datasets,
giving rise to the challenges of extracting meaningful under-
lying variance within variables, and (ii) molecular examination
of microbial species or subspecies generates complex spectral
datasets and demands suitable data-handling tools in order to
extract important discriminating information. To overcome
these difficulties, many chemometric algorithms have been
applied to IR data such as the following ones: (i) principal
component analysis (PCA) for simplifying a dataset via linear
transformations by choosing a new coordinate system, in which
the rst principal component (PC) describes the greatest vari-
ance within the dataset,20 (ii) linear discriminant analysis (LDA)
to reduce confounding factors of within-category heterogeneity,
whilst maximizing discriminating biomarkers between each
category,21 (iii) quadratic discriminant analysis (QDA) in which
each group is modeled by a separate normal density and a prior
probability, and the classication of new observations is done
by choosing the group that has the highest posterior proba-
bility,22 and (iv) variable selection methods such as the succes-
sive projections algorithm (SPA)23 and genetic algorithm (GA)24

to improve the model performance compared to the full spec-
trum model, eliminating potential interfering variables that
generate a lower signal/noise ratio.

The choice and development of the multivariate classica-
tion approaches are important to ensure reliable fungal

detection using IR spectroscopy. For instance, multivariate
classication quality features such as sensitivity, specicity,
positive (or precision) and negative predictive values, Youden
index, and positive and negative likelihood ratios should be
calculated to ensure the validity of the results in accordance
with International Guidelines.25

Taking into account the potential of IR spectroscopy in
various biological assays and considering the difficulty in dis-
tinguishing between C. neoformans and C. gattii, this paper
proposes a method of differentiation between these fungal
pathogens using attenuated total reection-FTIR (ATR-FTIR)
spectroscopy coupled with multivariate classication tech-
niques. Herein, we have attempted to evaluate the potential of
a quicker, low cost method, which uses no reagents, as a new
technology for identifying fungal pathogens. This method is
based on biochemical intra-individual differences or “nger-
print” features with direct association between peaks and
chemical bonds between C. neoformans and C. gattii with
subsequent variable selection methods. In our study, sample
preparation, spectroscopic measurement, data preprocessing,
feature selection and analytical validation were addressed. To the
best of our knowledge, this is the rst paper that applies PCA-
QDA, SPA-QDA and GA-QDA to differentiate fungi samples based
on spectral data. Nevertheless, C. neoformans and C. gattii were
never discriminated by IR spectroscopy using wavelength selec-
tion to elucidate the altered biochemical-microbial ngerprint.

Materials and methods
Sample preparation

Fungal cultures from the Veterinary Hospital – UNESP, campus
Botucatu (SP), IMT/SP (Instituto de Medicina Tropical de São
Paulo), UFPI (Universidade Federal do Piaúı) and FioCruz
mycological collection, as well as recently isolated fungi from
Giselda Trigueiro Hospital (Natal/RN/Brazil) were used in this
study (Table 1). The fungal cultures were sent to the Institute of
Tropical Medicine of RN at UFRN for genotyping, under the
approval of the ethics committee, number 51050415.6.0000.5537.
These fungi were cultured on Sabouraud Agar and incubated for
48 hours at a temperature of 30 �C until satisfactory growth was
obtained.

For genotyping, the DNA was extracted from a 2 days old
sample, according to Trilles L. et al. (2008).12 The amplication
of the URA5 gene was carried out in a 50 mL PCR containing 1�
PCR buffer CG (Finnzymes), 3% DMSO, 0.2 mmol L�1 of each
primer URA5-(50-ATGTCCTCCCAAGCCCTCGACTCCG-30) and
SJO1-(50-TTAAGACCTCTGAACACCGTACTC-30)10 and 1 unit of
Phusion DNA polymerase (Finnzymes). Amplications were
performed in a thermocycler (Eppendorf) using the following
cycle: 98 �C for 1 min, 40 cycles of 98 �C for 10 s, 61 �C for 30 s,
72 �C for 30 s and a nal cycle at 72 �C for 10 min. The PCR
product volume was concentrated to 12.5 mL in a concentrator
(Eppendorf) and submitted to double digestion with Sau96I and
HhaI restriction endonucleases. The digestion reaction was
performed in a nal volume of 15 mL, containing 12.5 mL of PCR
product, 1.5 mL of 10� Cut Smart buffer, (New England BioL-
abs), 0.5 mL of HhaI (20 000 units per mL, New England
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BioLabs) and 0.5 mL of Sau96I (5000 units per mL, New England
BioLabs) at 37 �C for 3 h. The fragments were separated by 3%
agarose (GE healthcare) gel electrophoresis, stained with
ethidium bromide. The genotype of each isolate was dened
following the DNA band patterns described by Meyer, W. et al.
(2003)10 and Trilles, L. et al. (2008).12

For ATR-FTIR spectroscopy, some yeast colonies were placed
in 1.0 mL of paraformaldehyde solution at 4% plus phosphate
buffer (1 mol L�1) v/v, and in 1.5 mL Eppendorf tubes for cell
attachment to inactivate yeast cells for biosafety handling in the
spectroscopy equipment. The nal solution was added to 28
tubes with 28 different isolates of Cryptococcus. Aer 3 hours at
room temperature, tubes with cells were placed under refrig-
eration at �20 �C until the next step. For spectral readings, the
tubes were put at room temperature until defrosting, and then
centrifuged for 10 minutes at 5000g for cell precipitation.
The supernatant was removed and the cells were washed with
1.0 mL of sterile saline solution (0.95% w/v). The tubes were
maintained at 4 �C until spectroscopic analysis.

ATR-FTIR spectroscopy

ATR-FTIR spectra [n ¼ 280, 10 replicates of each one of the 28
samples (C. neoformans (n ¼ 14) and C. gattii (n ¼ 14)] were
examined on a Bruker VERTEX 70 FTIR spectrometer (Bruker
Optics Ltd., Coventry, UK) with a Helios ATR attachment con-
taining a diamond crystal internal reective element and a 45�

incidence angle of the IR beam. The instrument was set up to

perform a total of 16 scans with 4 cm�1 spectral resolution on
both background and sample. Approximately 50 mL of each
sample was applied to the ATR crystal immediately following
the collection of each background. To ensure that no air
bubbles were trapped on the crystal surface, a small piece of
aluminum foil was placed on the sample, following the same
strategy that was recently used by Cui et al. (2016).22 The ATR
crystal was cleaned with 70% v/v alcohol and a new background
was collected prior to analysis of a new sample.

Chemometrics procedure and soware

The data import, pre-treatment and construction of chemo-
metric classication models (PCA-LDA, PCA-QDA, SPA-LDA,
SPA-QDA, GA-LDA and GA-QDA) were implemented in MATLAB
R2014a soware (MathWorks, USA). Raw spectra were pre-pro-
cessed by cutting between 1800 and 900 cm�1 (235 wavenumber
at 4 cm�1 spectral resolution) and baseline-corrected. For PCA-
LDA/QDA, SPA-LDA/QDA and GA-LDA/QDA models, the
samples were divided into training (60%), validation (20%) and
prediction sets (20%) by applying the classic Kennard–Stone
(KS) uniform sampling algorithm to the IR spectra.23 The KS
algorithm was applied separately to each class to extract
a representative set of objects from a given dataset by maxi-
mizing the minimal Euclidean distance between the already
selected objects and the remaining objects. The training
samples were used in the modelling procedure (including
variable selection for LDA and QDA), whereas the prediction set
was only used in the nal classication evaluation. The
optimum number of variables for SPA-LDA/QDA and GA-LDA/
QDA was performed with an average risk G of LDA/QDA
misclassication. Such a cost function is calculated in the
validation set as,

G ¼ 1

NV

XNV

n¼1

gn; (1)

where gn is dened as,

gn ¼
r2
�
xn; mIðnÞ

�

minIðmÞsIðnÞr2
�
xn; mIðmÞ

� (2)

where I(n) is the index of the true class for the nth validation
object xn.

In this denition, the numerator is the squaredMahalanobis
distance between object xn (of class index In) and the sample
mean mI(n) of its true class. The denominator in eqn (2) corre-
sponds to the squared Mahalanobis distance between object xn
and the center of the closest wrong class.

The QDA classication is made by applying the quadratic
discriminant function (DFQ) to the selected variables for the
analyzed classes, according to eqn (3):

DFQ ¼ Qi1 � Qi2 (3)

where Qi1 and Qi2 are the quadratic distance functions for
classes 1 and 2, respectively.24 This quadratic function is
calculated for a given class k by the following equation:

Table 1 Cryptococcus isolates used in this work

Isolate ID Species Genotype Used for

BT14 C. gattii VGI Calibration
BT20 C. gattii VGII
HGT10 C. gattii VGII
FC3 C. gattii VGIII
FC9 C. gattii VGIV
PI1401 C. gattii VGII
CG751 C. gattii VGII
CN508 C. gattii VGII
BT2 C. neoformans VNI
BT3 C. neoformans VNI
FC5 C. neoformans VNII
HGT2 C. neoformans VNII
FC7 C. neoformans VNIV
HGT4 C. neoformans VNII
FC4 C. neoformans VNIII
BT29 C. neoformans VNIV
CN894 C. gattii VGII Validation
BT8 C. gattii VGII
FC6 C. gattii VGII
CN117 C. neoformans VNIII
HGT7 C. neoformans VNI
HGT5 C. neoformans VNII
FC1 C. gattii VGII Prediction
BT17 C. gattii VGII
CG606 C. gattii VGII
BT28 C. neoformans VNIV
HGT1 C. neoformans VNI
FC2 C. neoformans VNIV

This journal is © The Royal Society of Chemistry 2016 Anal. Methods, 2016, 8, 7107–7115 | 7109
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Qik ¼ (xi � �xk)
TSk

�1(xi � �xk) + loge|Sk| � 2 loge mk (4)

where xi is an unknown measurement vector for sample i, �xk is
the mean measurement vector of class k, Sk is the variance–
covariance matrix of class k, and mk is the prior probability of
class k.25

LDA classication follows a similar formulation, however in
this case, the natural logarithm for the determination of the
variance–covariance matrix (loge|Sk|) is not taken into account,
and the covariance matrix for LDA is based on a pooled
covariance matrix.25 In addition, LDA does not take into account
different variance structures for each class, assuming that the
studied classes have similar variance–covariance matrices. On
the other hand, QDA forms a separated variance model for each
class and does not assume that the classes have similar vari-
ance–covariance matrices.26 Therefore, QDA is more suitable
than LDA for building discriminant models when the analyzed
classes have very different variance structures, such as biolog-
ical media.

The GA routine was carried out during 40 generations with
80 chromosomes each. Crossover and mutation probabilities
were set to 60% and 10%, respectively. Moreover, the algorithm
was repeated three times, starting from different random initial
populations. The best solution (in terms of the tness value)
resulting from the three realizations of the GA was employed.
The LDA and QDA scores, loadings, and discriminant function
(DF) or Fisher score values were obtained for each category.

Sensitivity (the condence in a positive result for a sample of
the label class was obtained), specicity (the condence that
a negative result for a sample of the non-label class was ob-
tained), positive predictive value (PPV) (measures the propor-
tion of the correctly assigned positive examples and its value
varies between 0 and 1), negative predictive value (NPV)
(measures the proportion of correctly assigned negative exam-
ples and its value varies between 0 and 1), Youden's index (YOU)
(evaluates the classier's ability to avoid failure), the likelihood
ratio (LR+) (represents the ratio between the probability to
predict an example as positive when it truly is positive, and the
probability to predict an example as positive when it actually is
not positive), the likelihood ratio (LR�) (represents the ratio
between the probabilities to predict an example as negative
when it is actually positive, and the probability to predict an
example as negative when it truly is negative) were calculated as
important quality standards in the test evaluation. The quality
metrics used in this study for evaluating the classication
results can be calculated with the following equations:

Sensibility ð%Þ ¼ TP

TPþ FN
� 100 (5)

Specificity ð%Þ ¼ TN

TNþ FP
� 100 (6)

PPV ¼ TP

TPþ FP
(7)

NPV ¼ TN

TNþ FN
(8)

YOU ¼ SENS � (1 � SPEC) (9)

LRð þ Þ ¼ SENS

1� SPEC
(10)

LRð � Þ ¼ 1� SENS

SPEC
(11)

where FN is a false negative, FP is a false positive, TP is a true
positive and TN is a true negative. SENS is the sensibility and
SPEC is the specicity.

Results

A typical representative average spectrum was obtained by ATR-
FTIR for C. neoformans and C. gattii with a slight difference of
glycogen intensities (1015, 1038, and 1045 cm�1) and DNA/RNA
wavenumbers (1123, 1126, and 1219 cm�1) (Fig. 1). The
maximum and minimum variances between the 10 replicates of
the class C. gattii were from 1.05 � 10�8 to 1.91 � 10�5, while
those for the class C. neoformans ranged from 4.94 � 10�9 to
9.30 � 10�8. The variance between the two classes was 5.48 �
10�11. These spectra were normalized to the amide I (1650 cm�1)
absorbance band.

PCA-LDA/QDA models

The discriminant function (DF) plot of PCA-LDA on the average
ATR-FTIR spectra reveals a degree of overlap between the
classes (Fig. 2A). The PCA-LDA model was built from the cali-
bration set using 3 PCs, together explaining 96.0% of the vari-
ance in the data. When PCA-QDA (also with 3 PCs and 96.0% for
explained variance) was used to segregate the two categories,
the DF plot was obtained, and there was a weak segregation
from each category, as shown in Fig. 2B.

PCA-QDA presented better segregation than PCA-LDA
between the classes, but a clear region of overlap existed. In

Fig. 1 Average spectrum for each original class (C. gattii, dash line; C.
neoformans, solid line).
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addition, even within a given category (C. gattii) we can see some
inter-fungal variation, suggesting different genotypes.

SPA-LDA/QDA models

SPA-LDA was applied to the dataset to obtain the optimum
number of variables by a minimum cost function G. As can be
seen in Fig. 3A, the model built with only 2 variables (1043 cm�1

and 1683 cm�1) slightly improved the segregation between C.
neoformans and C. gattii, when compared with PCA-LDA.
The coefficients of these functions were calculated using
the training-set statistics (class means and pooled covariance

matrix) for the 2 selected variables. The selected variables
highlight discriminating differences at amide I (1683 cm�1) and
glycogen (1043 cm�1). The SPA-QDA employed for comparison
resulted in the selection of two variables, namely 1043 cm�1 and
1683 cm�1. As can be seen in Fig. 3B, DF� samples do not fully
discriminate among the categories investigated. The PCA-QDA,
SPA-QDA results also show a variation within the category
(C. gattii), suggesting differences in genotypes.

GA-LDA/QDA models

GA-LDA was applied to the data set and resulted in the selection
of 17 variables, namely 946, 977, 991, 1074, 1180, 1186, 1259,

Fig. 2 (A) Discriminant function versus samples calculated using the
PCA-LDA model from two categories (C ¼ C. gattii and + ¼ C. neo-
formans), (B) discriminant function versus samples calculated using the
PCA-QDA model from two categories (C ¼ C. gattii and + ¼ C.
neoformans), where neo, deneo and hyb refers to the cryptic species
C. neoformans (VNI and VNII), C. deneoformans (VNIV) and the hybrid
between C. neoformans and C. deneoformans (VNIII) respectively,
while gat, deut, bacil and tetra refers to the cryptic species C. gattii
(VGI), C. deuterogattii (VGII), C. bacillosporus (VGIII) and C. tetragattii
(VGIV).

Fig. 3 (A) Discriminant function versus samples calculated using the
SPA-LDA model from two categories (C ¼ C. gattii and + ¼ C. neo-
formans). (B) Discriminant function versus samples calculated by using
the SPA-QDA model from two categories (C ¼ C. gattii and + ¼ C.
neoformans), where neo, deneo and hyb refer to the cryptic speciesC.
neoformans (VNI and VNII), C. deneoformans (VNIV) and the hybrid
between C. neoformans and C. deneoformans (VNIII), respectively,
while gat, deut, bacil and tetra refer to the cryptic speciesC. gattii (VGI),
C. deuterogattii (VGII), C. bacillosporus (VGIII) and C. tetragattii (VGIV).

This journal is © The Royal Society of Chemistry 2016 Anal. Methods, 2016, 8, 7107–7115 | 7111
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1276, 1309, 1340, 1371, 1442, 1512, 1525, 1670, 1702 and
1712 cm�1. Using the 17 selected wavelengths, the Fisher scores
for all the samples of the data set were obtained (Fig. 4A). There
was clearly less overlap between C. neoformans vs. C. gattii
compared to the other models (PCA-LDA/QDA and SPA-LDA/
QDA). Examination of the selected wavenumbers following GA-
LDA (Fig. 4A) indicated that the main biochemical alterations
for segregation between the species were on glycogen, DNA/
RNA, phosphate bands, amide I and amide II. Several selected
wavenumbers appear to be of particular interest, namely the

variables at 991 and 1074 cm�1, representing carbohydrate
bands. The variables at 1180 and 1259 cm�1 represent the
spectral region of DNA/RNA. Finally, the variables at 1670, 1702
and 1712 cm�1 represent the ngerprint region for proteins.
GA-QDA employed for comparison resulted in the selection of
the same 17 wavenumbers selected for GA-LDA. However, as can
be seen in Fig. 4B, there was a greater homogeneity effect
among classes using only the 17 wavenumbers selected by GA in
the QDA modeling with no misclassication obtained.

Quality metrics

The empirical evaluation of classication in IR spectroscopy or
new techniques for microbiology studies support the usefulness
and effectiveness of the classication method. Assessment of
the quality of the classication performance without focusing
on a class is the most general way of comparing the quality of
the classication results. Estimation of such metrics (sensi-
tivity, specicity, positive, PPV, NPV, YOU, LR+ and LR�) were
calculated as important quality standards in the test evaluation.
Classication rates were determined using the best models.

The corresponding quality metrics achieved for PCA-LDA,
SPA-LDA and GA-LDA models of each category are shown in
Table 2. For the C. gattii category, all the rate classication
values from all models using the LDA approach were well
classied, showing that ATR-FTIR spectroscopy has the poten-
tial to detect and identify this category in a dataset. On the other
hand, the sensitivity rates from PCA-LDA, SPA-LDA and GA-LDA
for the C. neoformans category achieved scores of 33.3%, 70.0%
and 20.8%, respectively, showing poor accuracy in comparison
with the other category (C. gattii), where LDA was employed.
Furthermore, the remaining quality metrics for the C. neofor-
mans category using LDA models (PCA, SPA and GA) also ach-
ieved unsatisfactory results.

Table 3 presents the validation results for the optimized
model (PCA-QDA, SPA-QDA and GA-QDA) of each category.

Fig. 4 (A) Discriminant function versus samples calculated by using
the GA-LDA model from two categories (C ¼ C. gattii and + ¼ C.
neoformans). (B) Discriminant function versus samples calculated by
using the GA-QDA model from two categories (C ¼ C. gattii and + ¼
C. neoformans), where neo, deneo and hyb refer to the cryptic species
C. neoformans (VNI and VNII), C. deneoformans (VNIV) and the hybrid
between C. neoformans and C. deneoformans (VNIII), respectively,
while gat, deut, bacil and tetra refer to the cryptic speciesC. gattii (VGI),
C. deuterogattii (VGII), C. bacillosporus (VGIII) and C. tetragattii (VGIV).

Table 2 Quality performance values from three classification
methods (PCA-LDA, SPA-LDA and GA-LDA) by ATR-FTIR spectros-
copy for each category

Stage performance features PCA-LDA SPA-LDA GA-LDA

Cryptococcus gattii
Sensitivity (%) 100.0 100.0 100.0
Specicity (%) 100.0 100.0 100.0
Positive predictive values (PPV) 100.0 100.0 100.0
Negative predictive values (NPV) 100.0 100.0 100.0
Youden index (YOU) 100.0 100.0 100.0
Positive likelihood ratios (LR+) - - - - - - - - -
Negative likelihood ratios (LR�) 0.0 0.0 0.0

Cryptococcus neoformans
Sensitivity (%) 33.3 70.0 20.8
Specicity (%) 33.3 70.0 30.6
Positive predictive values (PPV) 33.3 70.0 16.7
Negative predictive values (NPV) 33.3 70.0 36.7
Youden index (YOU) �33.3 40.0 �48.6
Positive likelihood ratios (LR+) 0.5 2.3 0.3
Negative likelihood ratios (LR�) 2.0 0.4 2.6
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According to the sensitivity results shown in Table 3, it is
possible to see that the sensitivity rates from PCA-QDA, SPA-
QDA and GA-QDA achieved scores of 3.5%, 96.6% and 89.3% for
the C. gattii category, respectively. Although these results for
sensitivity and other metrics using QDA models for C. gattii are
below the ones achieved for LDA models (100%), the SPA-QDA
and GA-QDA results can be considered satisfactory. For
C. neoformans and using QDA models, the sensitivity rate from
PCA-QDA, SPA-QDA and GA-QDA achieved scores of 50.0%,
74.4% and 84.4%, respectively, showing an interesting accuracy
in comparison with LDA results, particularly for GA-QDA. GA-
QDA for C. neoformans achieved the best classication rates
when compared to other models (PCA and SPA) using the QDA
approach.

Discussion

Making correct diagnoses is an urgent demand in the medical
mycology eld, since many molecular epidemiological studies
have been pointing out some differences between close species
or even genotypes concerning geographic distribution, clinical
aspects and treatment response. This is the case for crypto-
coccosis; when it is caused by C. gattii VGII isolates, it is less
responsive to antifungal drugs (especially azole), followed by
VGI, VNI and VNIV isolates.14–17 Furthermore, the molecular
types are not equally distributed across the world. VNIV is more
frequent in Europe, whereas C. gattii VGII is frequently found in
the Americas and VGI is found in Oceania, Asia and Europe.
Thus, for the Cryptococcus species, genotypes and geographic
origins are important data that must be taken into consider-
ation for choosing the correct treatment.14

Until now, the most successful methods for differentiating
between Cryptococcus species were PCR, PCR-RFLP or sequence
based methods, which are very laborious and expensive for
routine applications. In this study, we applied ATR-FTIR

spectral information coupled with multivariate classication
techniques (PCA-LDA/QDA, SPA-LDA/QDA and GA-LDA/QDA)
for the rst time to distinguish between C. neoformans and
C. gattii. In contrast to cryptococcosis diagnostic methods,
metabolic ngerprinting revealed through ATR-FTIR spectral
information coupled with multivariate classication techniques
(PCA-LDA/QDA, SPA-LDA/QDA and GA-LDA/QDA) were able to
quickly differentiate between C. gattii and C. neoformans. The
main biochemical alterations for segregation between the
species from the 17 variables used for the GA-LDA and GA-QDA
models were on carbohydrates, DNA/RNA, phosphate bands
and proteins.

C. neoformans and C. gattii are different in many aspects.
There is a predilection of C. neoformans for CNS and C. gattii for
the lungs, and as already mentioned C. neoformans mainly
infects immunosuppressed patients (mostly those with HIV/
AIDS), while C. gattii is considered a primary pathogen, infecting
immunocompetent and apparently healthy individuals.13,27

Essentially, this clinical pattern is common for the VGI and VGII
C. gattii genotypes, which more frequently cause infections in
immunocompetent individuals than the VGIII and VGIV geno-
types.28 The VGII genotype is responsible for almost all infections
in the Pacic Northwest, including the outbreak on Vancouver
Island,29 and its clinical manifestation more oen involves the
lungs than the CNS.30,31 According to Ma, H. et al. (2009),32 the
high virulence of this genotype is due to an unusual tubular
mitochondrial morphology, as a consequence of mitochondrial
fusions responsible for enhancing the repair of mitochondrial
DNA damage from oxidative stress within the phagosome.

One important difference between C. neoformans and
C. gattii, which might have contributed to the differences on
carbohydrate bands of the spectra variables, is their poly-
saccharide capsule, which is composed of 90–95% GXM glu-
curonoxylomannan (GXM; composed of mannose, xylose and
glucuronic acid), and 5% galactoxylomannan (GalXM). The
capsule determines the serotypes of C. neoformans (serotypes A,
D and AD) and the serotypes of C. gattii (serotypes B and C).33,34

Other biochemical differences between both pathogens have
also been revealed, such as differences in creatinine, canava-
nine, and glycine metabolism, which have allowed the devel-
opment of the CGB medium.5 Further investigations in a rat
model compared the metabolites released by C. neoformans and
C. gattii using magnetic resonance spectroscopy. Although
metabolites in C. neoformans were generally present in higher
concentrations, two novel metabolites of acetoin and dihy-
droxyacetone were described in C. gattii, potentially giving less
pro-inammatory responses when compared to C. neoformans,
which could facilitate fungal survival and local multiplication to
form cryptococcomas.35

All these clinical and biochemical differences between
C. neoformans and C. gattii are, certainly, a reex of genomic and
proteomic divergences between them, dating from 34 mya.
Comparison of C. neoformans var. grubii and C. gattii VGI strain
WM276 and VGIIa strain R265 revealed 85% to 87% identity.
Similar to C. neoformans, C. gattii has a genome size around
18.4Mb, divided into 14 chromosomes with conserved centromere
locations, although some rearrangements such as inversions

Table 3 Quality performance values from three classification
methods (PCA-QDA, SPA-QDA and GA-QDA) by ATR-FTIR spectros-
copy for each category

Stage performance features PCA-QDA SPA-QDA GA-QDA

Cryptococcus gattii
Sensitivity (%) 3.5 96.6 89.3
Specicity (%) 6.5 93.6 84.4
Positive predictive values (PPV) 100.0 93.3 100.0
Negative predictive values (NPV) 6.7 96.7 90.0
Youden index (YOU) �90.1 90.1 73.7
Positive likelihood ratios (LR+) 0.0 15.0 5.7
Negative likelihood ratios (LR�) 15.0 0.0 0.1

Cryptococcus neoformans
Sensitivity (%) 50.0 74.4 84.4
Specicity (%) 93.6 95.2 89.3
Positive predictive values (PPV) 93.3 96.7 90.0
Negative predictive values (NPV) 50.9 66.7 83.3
Youden index (YOU) 43.6 69.6 73.7
Positive likelihood ratios (LR+) 7.8 15.6 7.9
Negative likelihood ratios (LR�) 0.5 0.3 0.2
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and balanced translocations were observed.36 One interesting
observation was the loss of an iRNA mechanism in VGII isolates,
in contrast to C. neoformans isolates.37

The losses and gains of certain genes could corroborate the
spectral differences herein observed, not only between C. neo-
formans and C. gattii, but also between the genotypes within
each species. Farrer, R. A. et al. (2015)28 suggested the occur-
rence of some genes involved in the stress response and those in
coding for the metal binding domains in VGI and VGII could
contribute to their high virulence, while the loss of enolase and
copper transporters in VGIII and VGIV genotypes might
corroborate their low infection rates in immunocompetent
individuals, including cases reported in HIV/AIDS patients.38

Phylogenetic studies based on MLST have challenged the
existence of only two species, C. neoformans and C. gattii. As
such, seven species have recently been proposed: C. neoformans
(VNI and VNII), C. deneoformans (VNIV), C. gattii (VGI), C.
bacillosporus (VGIII), C. deuterogattii (VGII), C. tetragattii (VGIV),
and C. decagattii (VGIV and VGIIIc). The VNIII genotype would
be a hybrid between C. neoformans and C. deneoformans.39 These
results show that the variability found within the genus may
reect more than one intraspecic polymorphism, but indicate
the presence of different lineages that differ environmentally
and clinically.

In our study, we clearly demonstrated the segregation
between C. gattii and C. neoformans using our methodology with
subsequent PCA-QDA, SPA-QDA and GA-QDA algorithms. The
best model was GA-QDA, which successfully detected
biochemical alterations for the fungi using only 17 wave-
numbers, contrasting the traditional full-spectrum PCA model
which presents some overlap between categories. It would be
interesting to test this methodology with a larger number of
isolates not only belonging to different Cryptococcus species, but
also to different genotypes. As we can observe in Fig. 2B, 3B and
4B, there was some clustering for some genotypes or cryptic
species of C. neoformans, however, it clearly does not separate
the different cryptic species. Unfortunately, the number of
isolates available for this work (most from Brazilian mycology
collections) was limited. Increasing the amount of fungal
samples from all over the globe from both species and from
their respective genotypes would certainly improve the statis-
tical signicance and potentially distinguish even the very close
genotypes.

In addition, our method was thoroughly validated in accor-
dance with quality metrics, being considered as sensitive,
specic, and suitable for use as an alternative methodology for
fungal pathogenic determination, and potentially directly
applicable to clinical samples. Generating a library of major
fungal pathogens and evaluating more powerful multivariate
classication methods (support vector machine – SVM) is
required for this approach to become a standard classication
method.
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Comparison of multivariate classification
algorithms using EEM fluorescence data to
distinguish Cryptococcus neoformans and
Cryptococcus gattii pathogenic fungi

Fernanda S. L. Costa,a Priscila P. Silva,a Camilo L. M. Morais,a Raquel C. Theodoro,b

Thales D. Arantesbc and Kássio M. G. Lima *a

Cryptococcus neoformans and Cryptococcus gattii are the etiologic agents of cryptococcosis, whose

suitable treatment depends on rapid and correct detection and differentiation of the Cryptococcus

species. Currently, this identification is made by classical and molecular techniques; however most of

them are considered laborious and expensive. As an alternative method to discriminate C. gattii and C.

neoformans, excitation-emission matrix (EEM) fluorescence spectroscopy combined with multivariate

classification methods, Unfolded Partial Least Squares Discriminant Analysis (UPLS-DA), multiway-Partial

Least Squares Discriminant Analysis (nPLS-DA), Parallel Factor Analysis (PARAFAC), Principal Component

Analysis (PCA), Successive Projection Algorithm (SPA) and Genetic Algorithm (GA), followed by Linear

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) was herein investigated. This

technique showed to be an innovative and low cost methodology which requires a small sample

volume. Among the methods, the most successful model was UGA-LDA, which showed a sensitivity of

88.9% within only 5 selected wavelengths in calibration and 100.0% prediction for both classes of C.

neoformans and C. gattii, equaling or surpassing some of the biological tests that are usually carried out

to differentiate these fungi.

Introduction

Cryptococcosis is a systemic mycosis with global distribution,
mainly affecting people in tropical and subtropical areas due to
suitable climatic conditions for the saprophytic growth of its
etiological yeast agents: Cryptococcus neoformans and Crypto-
coccus gattii,1,2 being two complex species with four genotypes
each. Differences between C. neoformans and C. gattii as well as
among their genotypes may be associated with different clin-
ical manifestations and treatment responses to antifungal
drugs.3 The infection occurs by inhalation of dehydrated yeasts
(viable propagules) from the environment.4 Cryptococcosis has
variable clinical manifestations, such as pulmonary infection,
local lymphatic infection and mainly involvement of the
central nervous system. Most of the opportunistic cryptococ-
cosis infections are caused by C. neoformans, while C. gattii
commonly causes disease in immunocompetent individuals,4

usually requiring a longer therapeutic period,5–7 and a fast
differentiation between C. neoformans and C. gattii is in
demand.

Direct visualization of the agent in biological samples or
culture diagnosis can be easy with cryptococcosis, but differ-
entiating species and genotypes is an expensive challenge.
Bromothymol blue canavanine-glycine (CGB) medium has high
sensitivity (about 93%), but CGB identication is laborious and
needs at least 48 hours for a subjective interpretation.8 Associ-
ated with culture techniques, molecular methods such as
Restriction Fragment Length Polymorphism (RFLP), Amplied
Fragment Length Polymorphism (AFLP),9 Polymerase Chain
Reaction (PCR) and their variants can be used to discriminate
Cryptococcus genotypes (VN-1, II, III and IV) from C. neoformans
(VG-I, II, III and IV) and C. gattii.10–14 All of these techniques are
expensive and laborious for application in routine diagnosis of
cryptococcosis.

For this reason, new analytical strategies that can distin-
guish fungal species with low cost and time should be devel-
oped. In this way, spectroscopic methods along with
chemometric methods have increasingly been applied in bio-
logical analysis as efficient tools for clinical diagnosis due to
their great potential for group classication. For instance, ATR-
FTIR and EEM uorescence have been applied to distinguish
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cancer cells15,16 and Raman for detecting phospholipids and
proteins in blood.17

Among spectroscopic techniques, molecular uorescence has
great importance since it is a highly sensitive analytical tech-
nique which allows measurements in natural environmental
concentrations, in addition of being non-destructive. Coupled
with this, the matrix of excitation-emission (EEM) uorescence
contains a huge amount of analyte information, allowing for
direct monitoring of uorophores due to its particular sensitivity
to a sample chemical environment.18,19 Fluorescence overlapping
components may be identied according to their wavelengths of
excitation and emission, and this technique is able to identify
biomolecules in samples.20

In spite of the great advantages of EEM uorescence spec-
troscopy, selectivity may be impaired due to the large spectral
overlap or presence of matrix interference. However, chemo-
metric tools can maximize the extraction of relevant informa-
tion.21 Recognition methods of supervised and unsupervised
standards are commonly applied to extract spectral character-
istics and develop classication models.22 Among the super-
vised monitoring methods, we can highlight partial least
squares discriminant analysis (PLS-DA), which is an adaptation
of PLS for pattern recognition where a code for each class is
assigned during the calibration process.23 It is a model that
reduces the number of variables and may even be employed
where the variability within groups is greater than the variability
between groups. It can be constructed with its own 3Dmatrix (n-
PLS-DA)24 or built by unfolding the original data using the
Unfolded Partial Least Squares (UPLS) method.25

Nevertheless, some sets of data using PLS do not provide
satisfactory results. In these cases, it is recommended to use
other methods such as linear discriminant analysis (LDA). In
LDA, the densities of conditional class probability are consid-
ered as normal multivariate distributions with different mean
vectors for different classes, wherein the scattering matrices are
identical for all classes. When it is not possible to take the
classes' dispersion matrices as equal, the result is to apply the
quadratic discriminant analysis (QDA).26 However, when
compared with PLS-DA, the LDA and QDA methods present as
a limitation the strong collinearity of the data. For bypassing
this disadvantage, the number of training samples must be
equal to or larger than the number of variables included in the
LDA model. In this sense, dimensionality reduction methods
are required before LDA and QDA for classication of spectral
data.27

A widely used data reduction method is Principal Compo-
nent Analysis (PCA).28 PCA simplies a dataset through linear
transformations by choosing a new coordinate system. In this
system, the rst principal component (PC) describes the great-
est variance within the dataset29 and can be used to reduce data
multidimensionality, maintaining the most relevant variability.

Parallel factor analysis (PARAFAC) models are a generaliza-
tion of principal component analysis (PCA) for a set of data
matrices.30 They are used to decompose trilinear data with
a single solution, enabling robust estimates of excitation and
emission proles present in the spectra and their concentra-
tions, a property known as the advantage of the second order.31

The decomposed data coming from PARAFAC can be used to
build the LDA and QDA models. Also, resource selection or
a selection reduced by the use of pre-processing into a set of
latent variables may improve the classication, although there
are some economic and technical constraints.32

A selection of a subset of great features allows for the
construction of a model with high predictive capacity. Among
variable selection strategies, the most commonly used are
Genetic Algorithm (GA) and Successive Projections Algorithm
(SPA). The GA is generally suitable for variable selection as
a method that optimizes a set of data to be used for binders of
an articial evolutionary process. In order for it to be applied to
a classication problem, it can be coupled with LDA resulting in
response maximization and recognition capability estimated by
cross-validation in the training set.33 On the other hand, SPA is
a variable selection method used to minimize multicollinearity
problems in the original dataset. It comprises a rst phase in
which projection operations are performed with an array of
descriptor values. These projections are used to generate
descriptor subsets with less multicollinearity. In the next step,
the best subset is selected to minimize a cost function associ-
ated with the average risk of classication error for a given set of
validation by comparing the Mahalanobis distance of the
sample relative to its true class and the nearest wrong class.34

Herein, this study aimed to use molecular uorescence
spectroscopy to discriminate between C. neoformans and C.
gattii and compare the potential of scoring models built with
second-order data (UPCA-LDA/QDA, UGA-LDA/QDA, USPA-LDA/
QDA, PARAFAC-LDA/QDA, UPLS-DA and nPLS).

Experimental procedures
Sample preparation

The 28 isolates of Cryptococcus used in this study are from the
Hospital of Clinics and Veterinary Hospital – UNESP, campus
Botucatu (SP/Brazil), IMT/SP/Brazil (Instituto de Medicina Trop-
ical de São Paulo), UFPI/Brazil (Universidade Federal do Piaúı)
and FioCruz/Brazil mycological collection. The fungal isolates
from the hospitals were sent to the Institute of Tropical Medicine
of RN at UFRN/Brazil for genotyping, under the approval of the
ethics committee, number 51050415.6.0000.5537.

As previously described,35 the fungal isolates in culture on
Sabouraud Agar with cloranfenicol (50 mg L�1) were identied
by PCR-RFLP of the URA5 gene. For EEM uorescence, 28 yeast
colonies of different isolates of Cryptococcus were used, each one
was placed in a 1.5 mL microtube, with 1.0 mL of 4% para-
formaldehyde solution plus phosphate buffer (1 mol L�1) v/v, for
cell attachment to inactivate yeast cells for biosafety handling in
the uorescence equipment. The nal solution of each of the
microtubes was transferred to 28 different tubes. Aer 3 hours at
room temperature, the tubes with cells were placed under
refrigeration at �20 �C until the next step. For uorescence
reading, the tubes were put at room temperature until defrosted,
and then centrifuged for 10 minutes at 5000g for cell precipita-
tion. The supernatant was removed and the cells were washed
with 1.0 mL of sterile saline solution (0.95%w/v). The tubes were
maintained at 4 �C until uorescence was recorded.
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EEM uorescence spectroscopy

The emission values obtained for calibration were acquired at
an excitation of 240 nm and in the emission range from 250 to
900 nm (1 nm steps). For fungal culture samples, the excitation/
emission uorescence data were acquired in the wavelength
range of 220–320 nm for excitation and 250–900 nm for emis-
sion, in steps of 10 and 1 nm for excitation and emission,
respectively. A RF-5301 Shimadzu spectrouorometer with a 0.5
mm quartz cuvette was used. The excitation and emission
monochromator slit widths were xed at 5 nm, the speed scan
was set to super mode (3000 nm min�1), the photomultiplier
tube was set to the medium level and a cell with a ber optic
reectance probe was used. A total of 500 mL of saline solution
with fungal cells was added to the uorescence cuvette for
reading, and the cuvette was washed with distilled water aer
each mensuration in an alcohol solution at 70% and washed
again with distilled water to avoid contamination between
fungal samples. The temperature was maintained at 25 �C
throughout the experiments.

Chemometric procedure and soware

Spectral pre-processing and multivariate classication models
were built using MATLAB R2011a soware (The Math-Works,
Natick, USA) and the PLS Toolbox 7.9.3 package (Eigenvector
Research, Inc., Wenatchee, WA, USA). The spectral pre-pro-
cessing was composed of a cut in the region of 801–900 nm in
the emission range, and by removing Rayleigh and Raman
scatterings using the ‘EEMscat’ algorithm.36 Ranges of 220–320
nm for excitation and 250–800 nm for emission were used for
model building, with steps of 10 and 1 nm used for excitation
and emission, respectively. This resulted in a data matrix size of
11 � 551 for each sample. For the construction of classication
models, the samples were divided into calibration (70%) and
prediction (30%) sets using the Kennard–Stone (KS) sample
selection algorithm.37

The following classication methods were utilized: UPCA-
LDA/QDA; UGA-LDA/QDA; USPA-LDA/QDA; PARAFAC-LDA/
QDA; UPLS-DA; and nPLS-DA.

The UPCA-LDA/QDA algorithm is based on the unfolding of
the EEM matrices into row vectors. These vectors are organized
into a matrix X containing n rows (samples) and k columns
(variables). Then a regular PCA followed by LDA and QDA
methods is used. The PCA decomposition of X takes the
following form:38

X ¼ TPT + E (1)

where T is the scores matrix; P is the loadings matrix; and E is
the residual matrix. The LDA and QDA are applied to the PCA
scores as follows:39

Lik ¼ ðxi � xkÞTSpooled
�1ðxi � xkÞ � 2 loge pk (2)

Qik ¼ ðxi � xkÞTSk
�1ðxi � xkÞ þ loge

��Sk

��� 2 loge pk (3)

in which Lik is the LDA classication score; Qik is the QDA
classication score; xi is the vector containing the classication

variables for sample i (e.g., PCA scores for A components); �xk is
the mean vector of class k; Sk is the variance–covariance matrix
of class k; Spooled is the pooled covariance matrix; and pk is the
prior probability of class k. The Sk, Spooled and pk are calculated
as follows:

Sk ¼ 1

nk � 1

Xnk

i¼1

ðxi � xkÞðxi � xkÞT (4)

Spooled ¼ 1

n

XK

k¼1

nkSk (5)

pk ¼ nk

n
(6)

where n is the total number of objects in the training set; K is the
number of classes; and nk is the number of objects of class k.

The same procedure of LDA and QDA is applied to the
selected variables by GA and SPA using the EEM matrices
unfolded (UGA-LDA/QDA and USPA-LDA/QDA). The GA reduces
the data into a few selected variables following an evolutionary
process based on Darwin's theory, where the best set of vari-
ables (chromosomes) is selected according to a tness func-
tion.40 And the SPA reduces the original data in order to
minimize their multi-collinearity according to the minimum of
the cost function G.41 The GA tness is calculated as the inverse
of the cost function G, which is determined as16

G ¼ 1

NV

XNV

n¼1

gn (7)

gn ¼
r2
�
xn;mIðnÞ

�

minIðmÞsIðnÞr2
�
xn;mIðmÞ

� (8)

where the numerator is the squared Mahalanobis distance
between object xn of class index I(n) and the sample mean mI(n)

of its true class; and the denominator is the squared Mahala-
nobis distance between object xn and the center of the closest
wrong class.

PARAFAC is a method of decomposition of high-order data
based on a trilinear system.42 It decomposes the three-way data
of EEM matrices X by43

X ¼ A(C|5|B)T + E (9)

where A is the PARAFAC scores matrix representing the sample
direction; B is the PARAFAC loadings matrix representing the
excitation direction; C is the PARAFAC loadings matrix repre-
senting the emission direction; and E is the residual tensor. The
symbol |5| represents the Khatri–Rao product.44 For classi-
cation purposes, the PARAFAC scores are used in conjunction
with LDA and QDA according to eqn (2) and (3), respectively.

UPLSA-DA and nPLS-DA are classication methods based on
partial least squares (PLS). In UPLS-DA, the three-way EEM data
are unfolded into a matrix X and a linear classication is made
based on a criterion obtained by PLS. This is achieved by an
interactive process involving eqn (10) and (11):45

X ¼ TP + E (10)

This journal is © The Royal Society of Chemistry 2017 Anal. Methods
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c ¼ Tq + f (11)

where c is the numerical representation of the label of each
sample according its class membership; T is the scores matrix; P
is the loadings matrix of X; q is the loadings matrix of c; and E
and f are the residuals of the spectra and classes, respectively.
nPLS-DA is the natural extension of PLS-DA to N-way
structures.46

The UPCA-LDA/QDA models were built with 4 Principal
Components (PCs), which included 89.0% of explained vari-
ance. UGA-LDA/QDA models were built from the best solution
(in terms of the tness value) resulting from the GA routine,
which was carried out for 40 generations with 80 chromosomes
each. Crossover and mutation probabilities were set to 60% and
10%, respectively. UPLS-DA and nPLS-DA models were built
with 3 and 4 Latent Variables (LVs), which included 99.1% and
90.2% of explained variance, respectively. The PARAFAC model
was previously developed and selected a two-factor score matrix,
with 99.0% of explained variance.

Finally, the method was validated to determine whether it
fullled its intended purpose. To do this, some gures of merit
such as sensitivity, specicity, positive predicted value (PPV),
negative predicted value (NPV), Youden's index (YOU), positive
likelihood ratio (LR+), and negative likelihood ratio (LR�) were
calculated to ensure the quality of the models.

Results and discussion

Fig. 1 presents the excitation/emission uorescence spectra
(EEM) of one sample of C. gattii (Fig. 1a) and C. neoformans
(Fig. 1b), aer removing Rayleigh and Raman scatterings (the
excluded spectral regions were properly corrected by interpo-
lation). As can be seen in Fig. 1a and b, the spectral proles of
both pathogen classes are very similar, making it difficult to
distinguish between them. For this reason, it is necessary to use
multivariate classication algorithms that maximize the
difference between the two classes.

A total of 28 samples were used for building the models,
divided into two groups: calibration (18 samples) and

prediction (10 samples). Table 1 shows the results of PLS-DA
classication models built using the EEM uorescence data for
differentiating C. gattii and C. neoformans pathogens.

The UPLS-DA model used the unfolded matrix with a size of
28 � 6061, and it was built with 3 latent variables, which
contemplates 99.05% of the explained variance. For the
prediction samples, this model correctly classied 100.0% of C.
gattii samples and C. neoformans samples, with a RMSEP of
0.28. Also, it presented a satisfactory classication for the cali-
bration samples for both classes, with a RMSEC of 0.30. The
nPLS-DA model used a 3D-matrix with a size of 28 � 11 � 551.
The model was built using only 4 latent variables, which
contemplated 99% of the explained variance. In the calibration
set, the classication was more satisfactory for C. gattii, with
a RMSEC of 0.38, while in the prediction set there was a 100%
correct classication rate for both pathogen classes, with
a RMSEP of 0.31. As already mentioned in the literature,20 in
some cases the PLS-DA models do not provide a good classi-
cation rate. The above results conrm that, as seen in Table 1,
the correct classication rate in calibration was low, especially
for the C. gattii class. This lower result in calibration suggests
that the model is not well tted due to the small number of
samples used.

Therefore, classication models using LDA and QDA were
employed in an attempt to maximize the difference between the
classes. The UPCA-LDA model built with 4 principal compo-
nents (PCs) showed a higher classication capacity for the C.

Fig. 1 Excitation–emission molecular fluorescence spectra obtained for C. gattii (a) and C. neoformans (b). The Rayleigh and Raman scatterings
have been removed from the spectra.

Table 1 Correct classification rates obtained for classification models
(UPLS-DA and nPLS-DA) between C. gattii and C. neoformans

Model Class Calibration Prediction

UPLS-DA (3)a C. gattii 66.7 100.0
C. neoformans 88.9 100.0

nPLS-DA (4)a C. gattii 66.7 100.0
C. neoformans 88.9 100.0

a Number of latent variables.
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gattii class. The same was observed in the UPCA-QDA model
also built with 4 PCs, in which the percentage of correct clas-
sication was even lower in the calibration and the prediction
set compared to the previous algorithm.

A PARAFAC model was previously constructed using two
components that explained 99.0% of the data variance. The two-
factor scores matrix was submitted to the LDA and QDA
routines, in order to obtain the classication models. PARAFAC-
LDA showed a better classication for C. neoformans, especially
in the prediction set, in which 100.0% of the samples were
correctly identied. However, for C. gatti the correct classica-
tion rate was very low both in the calibration and in the
prediction set. PARAFAC-QDA, in comparison with the previous
model, provided similar results for C. gatti, but the performance
for C. neoformans was not satisfactory and lower than that of the
LDA, as can be seen in Table 2.

The rst variable selection model based on the successive
projections algorithm (SPA) obtained a 100% classication rate
for the two classes, selecting 2 variables for classication
(Fig. 2a). Both models better classied the C. neoformans group
in calibration.

Table 2 Correct classification rates obtained for classification models
(PARAFAC-LDA/QDA, UPCA-LDA/QDA, USPA-LDA/QDA and UGA-
LDA/QDA) between C. gattii and C. neoformans

Model Class Calibration Prediction

PARAFAC-LDA (2)a C. gattii 55.6 60.0
C. neoformans 88.9 100.0

PARAFAC-QDA (2)a C. gattii 77.8 60.0
C. neoformans 66.7 80.0

UPCA-LDA (4)b C. gattii 77.8 100.0
C. neoformans 88.9 60.0

UPCA-QDA (4)b C. gattii 100.0 100.0
C. neoformans 66.7 20.0

USPA-LDA (2)c C. gattii 66.7 100.0
C. neoformans 77.8 100.0

USPA-QDA (2)c C. gattii 66.7 100.0
C. neoformans 77.8 100.0

UGA-LDA (5)c C. gattii 88.9 100.0
C. neoformans 88.9 100.0

UGA-QDA (11)c C. gattii 55.6 40.0
C. neoformans 100.0 100.0

a Number of parallel factors. b Number of principal components.
c Number of selected variables.

Fig. 2 Excitation–emission molecular fluorescence mean spectra with the variables selected (C) by the (a) USPA-LDA/QDA model, (b) UGA-
LDA model and (c) UGA-QDA model.

This journal is © The Royal Society of Chemistry 2017 Anal. Methods
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The UGA-LDA model selected 5 variables (Fig. 2b). As seen in
Table 2, the classication rate was 88.9%, which corresponds to
only one misclassied sample for the calibration set of the two
pathogen classes. The UGA-QDA model was built with only 11
variables (Fig. 2c), and had a satisfactory rating only for the C.
neoformans class, while only 50.0% of the samples were classi-
ed correctly for C. gattii in calibration and prediction sets.
Using the 5 selected wavelengths, Fisher scores for all the data
set samples were obtained (Fig. 3). These results corroborate
with the literature24 since GA includes an optimization process
in which many combinations of features and their interactions
are considered, as GA has the advantage of enabling efficient
searches for clusters with high data size and complexity.

Table 3 presents the validation results of the optimized
models (UPLS-DA, nPLS-DA and PARAFAC-LDA/QDA) for each
classication category. The results in Table 3 show that the

sensitivity rate of UPLS-DA, nPLS-DA, PARAFAC-LDA and PAR-
AFAC-QDA achieved scores of 100.0%, 100.0%, 50.0% and
75.0% for the C. gattii category, respectively. Among these
models, the most satisfactory models for C. gattii classication
were UPLS-DA and nPLS-DA. For the classication of C. neo-
formans using the UPLS-DA, nPLS-DA, PARAFAC-LDA and
PARAFAC-QDA models, the sensitivity rate achieved values of
100.0%, 100.0%, 50.0% and 66.7%, respectively, showing
perfect accuracy only for UPLS-DA and nPLS-DA models. The
similar performance of UPLS-DA and nPLS-DA demonstrates
that the unfolding procedure does not inuence the classica-
tion performance in this case.

In addition, the results in Table 3 show that the QDA had
superior classication performance than LDA using PARAFAC
as a dimensionality reduction technique. This probably
occurred because although both LDA and QDA are based on
a Mahalanobis distance calculation, the QDA algorithm forms
a separated variance model for each class, not assuming similar
class variance–covariance matrices as LDA does.47

Table 4 presents the validation results of the optimized
models (UPCA-LDA/QDA, USPA-LDA/QDA and UGA-LDA/QDA)
for each classication category. According to Table 4, the
sensitivity of UPCA-LDA, USPA-LDA and UGA-LDA for class C.
gattii was 100.0% for all models. Other parameters such as the
specicity, NPV and PV were all equal to 100% for class C. gattii,
corroborating with the sensitivity results. For the C. neoformans
class, the sensitivity of UPCA-LDA, USPA-LDA and UGA-LDA was
60.0%, 100.0% and 100.0%, respectively, thus demonstrating
that the UPCA-LDA is more satisfactory for C. gattii
classication.

The validation results of the optimized models UPCA-QDA,
USPA-QDA and UGA-QDA (Table 4) showed that the sensitivity
rates for C. gattii were 55.56%, 100.0% and 100%, respectively,
while for C. neoformans they were equal to 100.0%, 100.0% and
83.33%. Although presenting 100% sensitivity for the C.

Fig. 3 Discriminant function versus samples calculated by using the
UGA-LDA model from the two categories (C C. gattii and + C.
neoformans).

Table 3 Quality performance values of three classification methods (UPLS-DA, nPLS-DA and PARAFAC-LDA/QDA) by molecular fluorescence
spectroscopy for each category

Stage performance features UPLS-DA nPLS-DA PARAFAC-LDA PARAFAC-QDA

C. gattii
Sensitivity (%) 100.0 100.0 50.0 75.0
Specicity (%) 100.0 100.0 50.0 66.7
Positive predictive values (PPV) 100.0 100.0 60.0 60.0
Negative predictive values (NPV) 100.0 100.0 40.0 80.0
Youden index (YOU) 100.0 100.0 0.0 41.7
Positive likelihood ratios (LR+) — — 1.0 2.3
Negative likelihood ratios (LR�) 0.0 0.0 1.0 0.38

C. neoformans
Sensitivity (%) 100.0 100.0 50.0 66.7
Specicity (%) 100.0 100.0 — 75.0
Positive predictive values (PPV) 100.0 100.0 100.0 80.0
Negative predictive values (NPV) 100.0 100.0 0.0 60.0
Youden index (YOU) 100.0 100.0 — 41.7
Positive likelihood ratios (LR+) — — — 2.7
Negative likelihood ratios (LR�) 0.0 0.0 — 0.4

Anal. Methods This journal is © The Royal Society of Chemistry 2017
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neoformans class, the UPCA-QDA model presented low speci-
city, showing that this model could not satisfactorily
discriminate between the two classes of pathogens. With the
UGA-QDA, the sensitivity for C. gattii was 100.0% with a speci-
city and PPV of 62.5% and 40%, respectively. In addition, it
presented a sensitivity rate of 83.3% for the C. neoformans class.

The results found here were very satisfactory for discrimi-
nating C. neoformans and C. gattii classes, especially for UGA-
LDA, which showed an accuracy of 88.9% in calibration with 5
selected wavelengths and 100.0% in the prediction set for both
C. neoformans and C. gattii. The validation results of the UGA-
LDA optimized model conrmed the applicability potential of
this method for the classication of the two pathogens. The
sensitivity and specicity of 100% for both classes show how
this model is able to correctly identify the individuals belonging
and not belonging to each class. The obtained PPV and NPV
values of 100% suggest that the method was done correctly.
Youden's index (YOU) of 100% indicates the model's ability to
avoid failure. Also, the values LR+ and LR� corroborate the
indication that the UGA-LDA gave a satisfactory rating for both
fungal classes.

According to the literature, the differentiation into two
species is due the composition of the capsular polysaccharide
structure, the biochemical properties, the reservoir and the
immunological state.48,49 C. gattii and C. neoformans present
important differences in the nucleotide composition of their
RNAs.50,51 The satisfactory classication of the models based on
the EEM uorescence data is probably due to the different
luminescence patterns for each class, since they have different
chromophores (nucleotides) in their RNAs. Marbumrung (2012)
used uorescence spectroscopy and PCA to discriminate 10
nucleotides in 2 different solvents and obtained accuracies of
almost 100% for both.52 Another study that corroborates with
this hypothesis is that of Cekan and collaborators (2012), in
which the uorescence technique was used to study

conformation and nucleotide dynamics in DNA and the results
showed that there is an intrinsic relationship between the
nucleotide and the intensity of the uorescence, which was
proven by Electron Paramagnetic Resonance (EPR)
spectroscopy.53

This study shows the power of these chemometric algo-
rithms associated with molecular uorescence spectroscopy to
discriminate Cryptococcus neoformans and Cryptococcus gattii,
where the sensitivity found (100%) was higher than other values
reported in the literature for discriminating these species based
on ATR-FTIR spectroscopy, for instance, where sensitivity using
the GA-QDA algorithm (17 wavenumbers) for C. neoformans and
C. gattii categories was reported to be 84.4% and 89.3%,
respectively.35

Conclusion

This study demonstrates that EEM uorescence spectroscopy in
combination with multivariate analysis has the potential to
differentiate between C. gattii and C. neoformans cultures, with
a possible potential use directly for biological samples from
patients with cryptococcosis which would make the diagnosis
faster with a species-specic accuracy, reducing procedural
costs. Among the models used, UGA-LDA was the most satis-
factory, since its sensitivity values for both classes (C. neofor-
mans and C. gattii) were greater than or equal to those of
classical identication methods for these fungi. Thus, we can
conclude that this study puts forth an efficient and low-cost
method, with analyses which can be carried out more quickly
with a very small amount of sample. We not only believe that the
use of this method in biological samples is suitable for the
diagnosis and epidemiological studies of cryptococcosis, but
also believe that it should be developed for other systemic
fungal diseases as a promising diagnostic tool in medical
mycology.

Table 4 Quality performance values of three classification methods (UPCA-LDA/QDA, USPA-LDA/QDA and UGA-LDA/QDA) by molecular
fluorescence spectroscopy for each category

Stage performance features UPCA-LDA UPCA-QDA USPA-LDA USPA-QDA UGA-LDA UGA-QDA

C. gattii
Sensitivity (%) 100.0 55.6 100.0 100.0 100.0 100.0
Specicity (%) 100.0 100.0 100.0 100.0 100.0 62.5
Positive predictive values (PPV) 100.0 100.0 100.0 100.0 100.0 40.0
Negative predictive values (NPV) 100.0 20.0 100.0 100.0 100.0 100.0
Youden index (YOU) 100.0 55.6 100.0 100.0 100.0 62.5
Positive likelihood ratios (LR+) — — — — — 2.67
Negative likelihood ratios (LR�) 0.0 0.4 0.0 0.0 0.0 0.0

C. neoformans
Sensitivity (%) 60.0 100.0 100.0 100.0 100.0 83.3
Specicity (%) 60.0 55.6 100.0 100.0 100.0 100.0
Positive predictive values (PPV) 60.0 20.0 100.0 100.0 100.0 100.0
Negative predictive values (NPV) 60.0 100.0 100.0 100.0 100.0 80.0
Youden index (YOU) 20.0 55.6 100.0 100.0 100.0 83.3
Positive likelihood ratios (LR+) 1.5 2.3 — — — —
Negative likelihood ratios (LR�) 0.7 0.0 0.0 0.0 0.0 0.2

This journal is © The Royal Society of Chemistry 2017 Anal. Methods
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Anal. Chim. Acta, 2009, 642, 193–205.

22 L. Rubio, M. C. Ortiz and L. A. Sarabia, Anal. Chim. Acta,
2014, 820, 9–22.

23 B. Dejaegher, L. Dhooghe, M. Goodarzi, S. Apers, L. Pieters
and Y. Vander Heyden, Anal. Chim. Acta, 2011, 705, 98–110.

24 A. de A. Gomes, M. R. Alcaraz, H. C. Goicoechea and
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ABSTRACT 

Klebsiella pneumoniae and Escherichia coli are part of the Enterobacteriaceae family, 

being common sources of community hospital infections and having high antimicrobial 

resistance. This resistance profile has become the main problem of public health 

infections. Determining whether a bacterium has resistance is critical to the correct 

treatment of the patient. Currently the method for determination of bacterial resistance 

used in laboratory routine is the antibiogram, whose time to obtain the results can vary 

from 1 to 3 days. An alternative method to perform this determination faster is excitation-

emission matrix (EEM) fluorescence spectroscopy combined with multivariate 

classification methods. In this paper, Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA) and Support Vector Machines (SVM), coupled with 

dimensionality reduction and variable selection algorithms: Principal Component 

Analysis (PCA), Genetic Algorithm (GA), and the Successive Projections Algorithm 

(SPA) were used.  The most satisfactory models achieved sensitivity and specificity rates 

of 100% for all classes, both for E. coli and for K. pneumoniae. This finding demonstrates 

that the proposed methodology has promising potential in routine analyzes, streamlining 

the results and increasing the chances of treatment efficiency. 
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Introduction 

The Enterobacteriaceae family is one of the most clinically prominent bacteria 

groups. One of the main gram-negative pathogen is Klebsiella pneumoniae (K. 

pneumoniae), which causes opportunistic infections, such as pneumonia, sepsis and 

inflammation of the urinary tract1. Another gram-negative that compose the 

entereobacteriaceae family is Escherichia coli, which are not typically pathogenic to 

humans and have the ability to cause several diseases in different sites including 

gastrointestinal tract, the renal system and the central nervous system2,3.  

Antibiotic therapy induces the selection of resistant bacteria4, which generate 

environmental and health hazards, and economical risk. Over the last decades, several 

bacterial strains have become progressively resistant to antimicrobial agents5. Bacteria 

may have natural or acquired resistance. Among the genetic variations that confer 

resistance in bacteria, the main ones are extended spectrum betalactamases6 (ESBL), 

AmpC production, Carbapenemases production7, KPC group and MBL group5. 

Currently, the standard detection method is culture-based, which is time-

consuming and labor intensive, providing a slow detection8. Other methods can be used 

to obtain faster results, such as low cytometry9, electrochemical detection10, and 

polymerase chain reaction (PCR)11. Near infrared (NIR)12, Raman13 and Fourier 

transform infrared (FTIR) spectroscopy14 have been also reported for these applications. 

To identify if a strain of bacteria have resistance is necessary a test where an 

isolated culture is submitted at several types of antibiotics. The antibiotic sensitivity 

behavior of the isolated strains can be determined by disc diffusion method15, such as 

Minimal Inhibitory Concentrations (MIC)16 or Minimal Bactericidal Concentrations 

(MBC)17.  

Fluorescence spectroscopy has already been used in the detection18, structural 

investigation19,20 and in the construction of a DNA biosensor for E. coli21. Chemometric 

methods such as Linear Discriminant Analysis (LDA)22, Quadratic Discriminant Analysis 

(QDA)23 and Support Vector Machines (SVM)24, coupled with the dimensionality 

reduction algorithm: Principal Component Analysis (PCA)25,26; and variable selection 

algorithms: Genetic Algorithm (GA)27 and Successive Projections Algorithm (SPA)28, 

tend to enhance the spectroscopic techniques29,30,31.  

This paper brings a new perspective for the differentiation of sensitive and 

resistant bacteria of E. coli and K. pneumoniae species using excitation-emission 

fluorescence spectroscopy allied to multivariate classification methods. 
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Results and discussion 

Klebsiella pneumoniae samples belonged to three groups, which were named as: 

Control (ATCC 10031 - sensitive samples), resistant 1 (CCBH 6633 - samples that show 

resistance to carbapenems) and resistant 2 (CCBH 4955 KPC - samples resistant to 

carbapenems, cephalosporins, penicillin). Fig. 1 presents the mean excitation-emission 

fluorescence matrix (EEM) of Klebsiella pneumoniae: control (Fig. 1a), carbapenems 

resistant (Fig. 1b) and KPC (Fig. 1c), after removing Rayleigh and Raman scatterings 

(the excluded spectral regions were properly corrected by interpolation) and truncation 

done in the emission matrix.  

 

Figure 1: Excitation–emission molecular fluorescence matrix obtained for 

Klebsiella pneumoniae:  sensitive (a), carbapenems resistant (b) and KPC (c). The 

Rayleigh and Raman scatterings were removed from the spectra. 

 

The E. coli samples were composed of three groups, named control, resistant 1 

and resistant 2. The control group was formed by sensitive E. coli samples (ATCC 

25922). Resistance class 1 was composed of CCHB NDM samples, which have an 

enzyme called New Delhi metallo betalactamase, which attribute resistance to all beta-

lactams, especially carbapenems. The resistant class 2 was formed by CCHB ampC 
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7018, which shows a type of beta-lactamase that causes hydrolysis of penicillins, 

monobactams, cephalosporins and cefoxitin. The EEM data obtained for Escherichia 

coli: sensitive (Fig. 2a), NDM (Fig. 2b) and ampC (Fig. 2c) are presents in Fig. 2, after 

spectral pre-processing. 

 

Figure 2: Excitation–emission molecular fluorescence matrix obtained for 

sensitive Escherichia coli: sensitive (a), NDM (b) and ampC (c). The Rayleigh and 

Raman scatterings were removed from the spectra. 

 

As depicted in Figure 1 and 2, it is very difficult to distinguish the classes of 

sensitive and resistant bacteria only by their spectral profiles due to the great similarity 

between them.  An exploratory analysis was performed using PCA with the unfolded data 

after spectral pre-processing. Figure 3 shows the PCA scores for Klebsiella pneumoniae 

data, built with 3 principal components (PCs).  
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Figure 3: Scores on the first principal component versus the second principal 

component for classes Klebsiella pneumoniae: sensitive (♦), carbapenems 

resistant (■) and KPC (▲). 

 

It can be observed that in the first component, which explains 51.5% of the 

explained variance, the control samples do not present separation in relation to the 

resistant Klebsiella samples. The second PC explains 30.6% of the data variance and 

also fails to distinguish between control and resistant classes. For the Escherichia coli 

spectra, we also constructed a PCA using 4 PCs, where the scores are shown in Fig 4.  
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Figure 4: Scores on the first principal component versus the second principal 

component for classes Escherichia coli: sensitive (♦), NDM (■) and ampC (▲). 

 

In Fig. 4, it is not possible to identify a separation between the three classes. 

Projecting the scores for the first PC, which explains 63.6% of the data variance, it is 

possible to observe a segregation between part of resistance group 1, in relation to the 

others samples. However, projecting in the second PC, which explains 14.1% of the data 

variance the data, the three classes cannot be distinguished. PCA results support that it 

is necessary to use multivariate classification algorithms that maximize the difference 

between the sensitive and resistant classes. A total of 75 samples were used for building 

the models, divided into three groups: calibration (45 samples), validation (15 samples) 

and prediction (15 samples). Table 1 shows the results of classification models built 

using the EEM fluorescence data for differentiating sensitive Klebsiella pneumoniae and 

resistants Klebsiella pneumoniae.  
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Model Class Calibration Prediction 

2D-LDA Control 100.0 100.0 
Resistant 1 + 2 100.0 100.0 

2D-PCA-LDA (5)a Control 37.5 62.5 
Resistant 1 + 2 56.5 81.2 

2D-PCA-QDA (5)a Control 100.0 93.7 
Resistant 1 + 2 100.0 100.0 

2D-PCA-SVM (5)a Control 100.0 100.0 
Resistant 1 + 2 93.8 93.7 

2D-LDA Control 100.0 60.0 
Resistant 1 100.0 100.0 
Resistant 2 100.0 100.0 

UPCA-QDA (4)a Control 100.0 100.0 
Resistant 1 100.0 100.0 
Resistant 2 100.0 100.0 

USPA-QDA (2)b Control 100.0 100.0 
Resistant 1 93.3 100.0 
Resistant 2 100.0 80.0 

UGA-QDA (7)b Control 100.0 100.0 
Resistant 1 100.0 100.0 
Resistant 2 100.0 100.0 

UPCA-SVM (4)a Control 100.0 60.0 
Resistant 1 100.0 100.0 
Resistant 2 100.0 100.0 

USPA-SVM (2)b Control 73.3 100.0 
Resistant 1 80.0 100.0 
Resistant 2 86.7 80.0 

UGA-SVM (12)b Control 100.0 100.0 
Resistant 1 100.0 100.0 
Resistant 2 100.0 100.0 

a Number of principal components. b Number of selected variables. 

 

Table 1: Results obtained for classification models (2D-LDA, 2D-PCA-LDA, 2D-

PCA-QDA, 2D-PCA-SVM, UPCA-QDA/SVM, USPA-QDA/SVM and UGA-QDA/SVM) 

for sensitive Klebsiella pneumoniae and resistant. 

 

Initially, models were constructed comparing the class of Klebsiella sensitive and 

that of resistant. For built this last group, samples of two resistant classes are combined. 

Among these models, the ones that presented the most satisfactory results were 2D-

LDA and 2D-PCA-QDA, which obtained 100.0% calibration accuracy and classification 

rates above 93% in all classes in the prediction set. Models were constructed using the 

three classes of samples, applying QDA and SVM, coupled to dimensionality reduction 

algorithms (PCA, SPA and GA) in the unfolded data. With the exception of the USPA-

QDA, UPCA-SVM and USPA-SVM models, all others presented satisfactory results, with 

100% accuracy, both in calibration and in prediction, for the three classes. 
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Model Class Calibration Prediction 

2D-LDA Control 100.0 87.5 

Resistant 1 + 2 100.0 100.0 

2D-PCA-LDA (3)a Control 100.0 100.0 

Resistant 1 + 2 100.0 100.0 

2D-PCA-QDA (5)a Control 100.0 100.0 

Resistant 1 + 2 100.0 100.0 

2D-PCA-SVM (5)a Control 93.7 100.0 

Resistant 1 + 2 100.0 100.0 

2D-LDA Control 80.0 60.0 

Resistant 1 80.0 80.0 

Resistant 2 100. 100.0 

UPCA-QDA (4)a Control 100.0 100.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 100.0 

USPA-QDA (2)b Control 100.0 100.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 80.0 

UGA-QDA (7)b Control 100.0 100.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 100.0 

UPCA-SVM (4)a Control 93.3 60.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 100.0 

USPA-SVM (2)b Control 100.0 100.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 80.0 

UGA-SVM (5)b Control 100.0 100.0 

Resistant 1 100.0 100.0 

Resistant 2 100.0 100.0 
a Number of principal components. b Number of selected variables. 

 

Table 2: Results obtained for classification models (2D-LDA, 2D-PCA-LDA-2D, 2D-

PCA-QDA, 2D-PCA-SVM, UPCA-QDA/SVM, USPA-QDA/SVM and UGA-QDA/SVM) 

for sensitive Escherichia coli and resistant. 

 

The same strategy was applied to the E. coli samples, the results are shown on 

Table 2. The first models were created with only two classes: E. coli sensitive and the 

combined resistant samples. The results were satisfactory, mainly for 2D-PCA-LDA and 

2D-PCA-QDA, which obtained 100.0% accuracy in both classes, both in calibration and 

in prediction. The models constructed with the three classes presented satisfactory 

results in the classification. Unfolded models (UPCA-QDA and UGA-QDA) also resulted 

in 100.0% accuracy in calibration and prediction of the three classes in this comparison. 

  



62 
 

Stage performance features 

 UPCA-QDA UGA-SVM 2D-LDA 

 Cont. Res. 1 Res. 2 Cont. Res. 1 Res. 2 Cont. Res. 1+2 
Accuracy 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Sensitivity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Specificity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
F-score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 

Table 3: Quality performance values for the three classification methods (UPCA-

QDA, UGA-SVM and 2D-LDA with 2 classes) by molecular fluorescence 

spectroscopy for each category of Klebsiella pneumoniae. 

 

Table 3 presents the validation results of the optimized models (UPCA-QDA, 

UGA-SVM and 2D-LDA) for each classification category of Klebsiella pneumoniae. The 

models that considered three classes (UPCA-QDA, UGA-SVM) showed promising 

results, with 100.0% sensitivity and specificity rates. Another notable result is the 2D-

LDA model, built with only two classes, achieved similar results, with the same 100.0% 

sensitivity and specificity rates. The parameters accuracy and F-score were all equal to 

100.0%, showing that those models are valid to distinguish between different groups of 

Klebsiella pneumoniae bacteria. 

 

Stage performance features 

 UPCA-QDA UGA-SVM 2D-PCA-QDA 

 Cont. Res. 1 Res. 2 Cont. Res. 1 Res. 2 Cont. Res. 1+2 
Accuracy 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Sensitivity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Specificity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
F-score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 

Table 4: Quality performance values of three classification methods (UPCA-QDA, 

UGA-SVM and 2D-PCA-QDA) by molecular fluorescence spectroscopy for each 

category of Escherichia coli. 

 

The validation results of the optimized models UPCA-QDA, UGA-SVM and 2D-

PCA-QDA for the E. coli are illustrated in Table 4. The sensitivity and specificity rates for 

these models are 100.0% for all the analyzed classes. The accuracy and F-score values 

also reinforce the model efficiency.  

According to the literature, bacterial resistance is usually associated with the 

ability of bacteria to modify their cellular structure and induce them to produce 
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substances that neutralize the action of antibacterial agents. Satisfactory results from the 

models using EEM fluorescence data, for the E. coli and K. pneumoniae bacteria, 

demonstrate the sensitivity of the technique in detecting variations in the nuclear content 

of the cells and in the structure of the membranes itself. As reported by Opačić et al.19, 

who used fluorescence spectroscopy on structural investigation of the transmembrane 

C domain of the mannitol permease from Escherichia coli, the results showed that the 

technique was capable to differentiated the structure of EIImtl from structure of a IIC 

protein transporting diacetylchitobiose. Additionally, Romantsov et. al.20 used dynamic 

data obtained by fluorescence correlation spectroscopy to extract structural information 

on isolated nucleoids, besides the evaluation of the characteristic size of the structural 

units in terms of the DNA length and estimation of their spatial dimensions.  

 

Methods  

Sample preparation 

 The samples used were: E. coli ATCC 25922 - Standard strain, E. coli CCHB 

NDM +, E. coli CCHB ampC 7018, K. pneumoniae ATCC 1003, K. pneumoniae CCBH 

4955 KPC and K. pneumoniae CCBH 6633 resistant to Carbapenems. The CCBH strains 

were obtained from the Laboratory of Hospital Infection (LAPIH - Fiocruz/RJ). The ATCC 

strains belong to LABMIC / DMP – UFRN. Initially the pure samples were pealed in a 

BHI broth, then kept in the oven for 24 hours at 38 °C, so that the bacteria multiplied. 

The sample was then pealed on a petri dish, which was also kept in the oven for 24 

hours. Finally, a bacterial mass corresponding to approximately 106 colony forming units 

(CFU) was transferred from culture medium to falcon tube with 2 mL of phosphate buffer 

solution (1 mol L-1). 

 

EEM Fluorescence spectroscopy  

The excitation/emission fluorescence data were acquired in the wavelength 

range of 220–310 nm for excitation and 270–900 nm for emission, with steps of 10 and 
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1 nm for excitation and emission, respectively. A RF-5301 Shimadzu spectrofluorometer 

with a 0.5 mm quartz cuvette was used. The excitation and emission slits were set at 3 

and 5 nm, respectively, the speed scan was set to super mode; the photomultiplier tube 

was set to the medium level and a cell with a fiber optic reflectance probe was used. Five 

replicates of the concentrations at 1x106 UFC/mL, 5x105 UFC/mL, 1,3x105 UFC/mL, 

6,3x104 UFC/mL and 3,1x104 UFC/mL were performed. 

 

Data analysis 

Chemometrics procedure and software 

Spectral pre-processing and multivariate classification models were built using 

MATLAB R2011a software (The MathWorks, Natick, USA), and the PLS Toolbox 7.9.3 

package (Eigenvector Research, Inc., Wenatchee, USA). A spectral range between 220-

310 nm for excitation and 270–900 nm for emission was used for model construction, 

with steps of 10 and 1 nm used for excitation and emission, respectively. This resulted 

in a data matrix size of 10×651 for each sample. The spectral pre-processing was 

composed by a cut in the region of 270-659 nm in the emission range, and by removing 

Rayleigh and Raman scatterings using the ‘EEMscat’ algorithm.32  

The following classification methods were utilized: two-dimensional linear 

discriminant analysis (2D-LDA)33, two-dimensional principal component analysis with 

linear discriminant analysis (2D-PCA-LDA)34, quadratic discriminant analysis (2D-PCA-

QDA)34, and support vector machines (2D-PCA-SVM)34. In addition to these, first-order 

classification using LDA, QDA and SVM were used in conjunction with the output from 

the dimensionality reduction algorithms: PCA, GA and SPA. 

For the construction of classification models, the samples were divided into 

calibration (60%), validation (20%) and prediction (20%) sets using the Kennard-Stone 

(KS) sample selection algorithm35. The proposed models were evaluated by calculating 

some quality parameters such as accuracy, sensitivity, specificity and F-score. 
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To statistically evaluate the classification models, calculations of sensitivity and 

specificity were performed using the test samples as important quality measures of 

model accuracy. Both parameters have a maximum value of 100 and a minimum of 0, 

and are obtained as follows: 

Sensitivity (%) =
TP

TP+FN
× 100               (1) 

Specificity (%) =
TN

TN+FP
× 100              (2) 

where FN is defined as a false negative and FP as a false positive; and TP and TN are 

defined as true positive and true negative, respectively.  

 Also, the models were evaluated using the area under the curve (AUC) and F-

score. The AUC is the area under the receiver operating characteristics conditions (ROC) 

curve, and the F-score is a measurement of the model accuracy defined by: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑆𝐸𝑁𝑆×𝑆𝑃𝐸𝐶

𝑆𝐸𝑁𝑆+𝑆𝑃𝐸𝐶
                (3) 

where SENS stands for sensitivity; and SPEC stands for specificity. 

 

Conclusion 

The present study demonstrates the ability of EEM fluorescence spectroscopy 

associated with multivariate classification in differentiating classes of susceptible and 

resistant bacteria of the species E. coli and K. pneumoniae. The most satisfactory 

models for the classification of K. pneumoniae were UPCA-QDA, UGA-SVM and 2D-

LDA, which presented 100% accuracy rates for all classes. For the E. coli data, the 

UPCA-QDA, UGA-SVM and 2D-PCA-QDA models were the best, having 100% 

predictive performance for the classification of all groups. All these models obtained a 

sensitivity and specificity rate of 100%. This paper suggest a new alternative in the 

detection of bacterial resistance, through a methodology that is faster than traditional 

methods of analysis, simplifying the diagnosis, and increasing the chances of recovery 

of the patients.  
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13. Kusić, D., Rösch, P. & Popp, J. Fast label-free detection of legionella spp. in 

biofilms by applying immunomagnetic beads and Raman spectroscopy. Syst. applied 



67 
 

microbiology 39, 132–140 (2016). 

14. Dieckmann, R. et al. Rapid characterisation of klebsiella oxytoca isolates from 

contaminated liquid hand soap using mass spectrometry, FTIR and Raman 

spectroscopy. Faraday discussions 187, 353–375 (2016). 

15. Alam, M. Z., Aqil, F., Ahmad, I. & Ahmad, S. Incidence and transferability of 

antibiotic resistance in the enteric bacteria isolated from hospital wastewater. Braz. J. 

Microbiol. 44, 799–806 (2013). 

16. Olorunmola, F. O., Kolawole, D. O. & Lamikanra, A. Antibiotic resistance and 

virulence properties in escherichia coli strains from cases of urinary tract infections. Afr. 

journal infectious diseases 7, 1–7 (2013). 

17. Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of 

antibacterial agents. Infect. Dis. Clin. 23, 791–815 (2009). 

18. Siripatrawan, U., Makino, Y., Kawagoe, Y. & Oshita, S. Rapid detection of 

escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. 

Talanta 85, 276–281 (2011). 
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CAPÍTULO 5 - CONCLUSÃO E PERSPECTIVAS 

Nesta tese, foi proposta a aplicação de técnicas espectroscópicas em conjunto 

com análise multivariada para a diferenciação de fungos Cryptococcus gattii e 

Cryptococcus neoformans e para a identificação de resistência bacteriana, em espécies 

de Escherichia coli e Klebsiella pneumoniae. 

O primeiro estudo demonstrou que a espectroscopia FTIR em combinação com 

análise multivariada tem o potencial para distinguir C.gatti e C. neoformans, através da 

identificação de biomarcadores, que podem facilitar a discriminação entre as duas 

espécies, reduzindo o tempo de diagnóstico. O que é de importância fundamental para 

o tratamento adequado dos pacientes, especialmente para imunocomprometidos. Além 

disso, pode reduzir os custos dos serviços de saúde. Entre os modelos utilizados, o GA-

QDA mostrou resultados mais satisfatórios, apresentando sensibilidade para ambas as 

classes igual ou superior a ensaios convencionais. Desta maneira, a metodologia 

proposta apresenta uma alternativa eficiente, de rapidez na análise, que exige uma 

quantidade pequena de amostra. Característica fundamental em análises biológicas, 

uma vez que o volume de fluidos biológicos é normalmente limitado, como neste caso 

o líquor.   

A espectroscopia de fluorescência EEM em combinação com análise 

multivariada também demonstrou grande potencial para diferenciar as culturas de C. 

gatti e C. neoformans, com resultados ainda mais promissores que os encontrados com 

a espectroscopia FTIR.  Entre os modelos utilizados, o UGA-LDA foi a mais satisfatório, 

pois apresentou valores de sensibilidade para ambas as classes (C. neoformans e C. 

gatti) iguais e em alguns casos, até maiores que alguns dos métodos clássicos de 

identificação desses fungos. A metodologia proposta tem grande potencial de ser 

empregada diretamente nas amostras biológicas de pacientes com criptococose, o que 

tornaria o diagnóstico mais rápido, reduzindo os custos processuais e mantendo os 

padrões de sensibilidade e especificidade das análises de rotina. 

A técnica de florescência EEM associada à algoritmos de classificação 

multivariada também foi empregada na identificação de resistência bacteriana para 

espécies E. coli e K. pneumoniae. Os resultados foram bastante promissores. Para a 

classificação de K. pneumoniae, os melhores modelos foram UGA-SVM e 2D-LDA, que 

apresentaram 100% de acertos em todas as classes, além de sensibilidade e 

especificidade também de 100%. Para os dados de E. coli, os modelos UPCA-QDA, 

UGA-SVM e PCA-QDA_2D, apresentaram 100% de desempenho na classificação de 

todos os grupos. Todos esses modelos obtiveram uma taxa de sensibilidade e 

especificidade de 100%. Este estudo sugere uma nova alternativa na detecção de 
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resistência bacteriana, por meio de uma metodologia mais rápida que os métodos 

tradicionais de análise. O que pode conferir mais agilidade ao diagnóstico e aumentar 

as chances de recuperação dos pacientes.  

Os estudos propostos são indicativos de que técnicas espectroscópicas e a 

classificação multivariada podem ser ferramentas poderosas nas análises clínicas. 

Podendo ser desenvolvidos novos modelos para diagnóstico de outras doenças 

fúngicas sistêmicas, se tornando uma ferramenta promissora na micologia médica. 

Assim, como utilizadas para a construção de um banco de dados de identificação de 

espécies e de resistência bacteriana. Auxiliando os profissionais da área da saúde na 

identificação do diagnóstico e possibilitando mais chances de cura aos pacientes, 

sobretudo no caso dos imunocomprometidos. 
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Variable selection with a support vector machine
for discriminating Cryptococcus fungal species
based on ATR-FTIR spectroscopy

Camilo L. M. Morais, Fernanda S. L. Costa and Kássio M. G. Lima *

Variable selection with supervised classification is currently an important tool for discriminating biological

samples. In this paper, 15 supervised classification algorithms based on a support vector machine (SVM)

were applied to discriminate Cryptococcus neoformans and Cryptococcus gattii fungal species using

ATR-FTIR spectroscopy. These two fungal species of the Cryptococcus genus are the etiological agents

of Cryptococcosis, which is an opportunistic or primary fungal infection with global distribution. This

disease is potentially fatal, especially for immunocompromised patients, like those suffering from AIDS.

The multivariate classification algorithms tested were based on principal component analysis (PCA),

successive projections algorithm (SPA) and genetic algorithm (GA) as data reduction and variable

selection methods, being coupled to a SVM with different kernel functions (linear, quadratic, 3rd order

polynomial, radial basis function, and multilayer perceptron). Some of these algorithms achieved very

successful classification rates for discriminating fungal species, with accuracy, sensitivity, and specificity

equal to 100% using both SPA-SVM-polynomial and GA-SVM-polynomial algorithms. These results show

the potential of such techniques coupled to ATR-FTIR spectroscopy as a rapid and non-destructive tool

for classifying these fungal species.

Introduction

Cryptococcosis is an opportunistic fungal infection caused by
inhaling basidiospores1 or dissected yeasts present in the
environment, causing an infection of the central nervous
system which affects immunocompromised individuals,
including AIDS patients and organ transplant recipients or
other patients receiving immunosuppressive drugs.2,3 This
disease affects the respiratory tract of the host causing severe
pneumonia and respiratory insufficiency and is responsible for
the majority of worldwide deaths from HIV-related fungal
infections.1,3

The main etiologic agents of Cryptococcosis in humans are
two species, namely Cryptococcus neoformans (serotypes A, D
and AD) and Cryptococcus gattii (serotypes B and C), which differ
in their epidemiology, host range, virulence, antifungal
susceptibility and geographic distribution.1 Cryptococcus gattii
is a primary pathogen which infects immunocompetent and
healthy individuals, having predilection for the lungs.4 On the
other hand, Cryptococcus neoformans has predilection for the
central nervous system and mainly infects immunosuppressed
patients mostly having HIV/AIDS.5 Cryptococcus gattii is
responsible for many infection cases in the Pacic Northwest of
the United States.6 This high virulence occurs due to an unusual

tubular mitochondrial morphology caused by mitochondrial
fusions to enhance the repair of mitochondrial DNA damage
from oxidative stress within the phagosome.4 In addition,
Cryptococcus gattii has two metabolites of acetoin and dihy-
droxyacetone which potentially produce less pro-inammatory
response than those of Cryptococcus neoformans. This facili-
tates fungal survival and local multiplication causing more
cryptococcomas.4 There are some morphological features that
are specically associated with each of the two species such as
texture, pigmentation produced by their colonies, and yeast
form.1,7 However, it is still more reliable to distinguish them by
their growth phenotype on certain media formulations based
on their biochemical differences.8

Cryptococcosis is a treatable disease, however its effects are
devastating to the patients, resulting in death or central nervous
system dysfunction unless the condition is diagnosed and
treated at the time of onset.1 Currently, the techniques used in
the identication of these pathogens are direct microscopic
examination and molecular methods such as DNA hybridiza-
tion and PCR-based methods (particularly nested, multiplex
and real time PCR).9,10 These methods provide both high
sensitivity and specicity; however, most have some limitations
that may hinder the nal diagnosis, further requiring several
days to detect and identify the microorganisms.10

In order to improve the ability to properly control fungal
infections in humans, early identication of the pathogen is
necessary, since they have different responses to antifungal
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treatments.11 In this sense, Fourier transform infrared spec-
troscopy (FTIR) has been standing out in the past few years in
the microbiological area,12,13 because it provides a large amount
of information about typical absorption bands for each func-
tional group, providing a spectroscopic ngerprint of the total
biochemical and structural composition unique for each
molecule.14 The mid-IR region at 1800–900 cm�1 contains the
fundamental vibrational modes of key chemical bonds of
intracellular mechanisms corresponding to the biochemical
ngerprint of the material under study, therefore being called
the biongerprint region.14 In addition, FT-IR has the advan-
tages of being rapid and non-destructive, using small sample
sizes, and requiring an easy sample preparation.14

In attenuated total reection – Fourier transform infrared
(ATR-FTIR), the ATR module enhances the signal by passing the
IR beam through the sample, taking advantage of several internal
reections with the crystal.15,16 Such reections generate an
evanescent wave that penetrates the material to a depth between
0.5 and 2 mm.16 ATR-FTIR has been very effective in analyzing
biological samples, as demonstrated in analyzing diverse types of
cancer,17 insects,18,19 and bacteria;20,21 as well as to monitor plant
health in a controlled22 and natural23 environment.

Good computation tools are required to follow the advances
in spectroscopy techniques applied to biological samples. These
tools enable building classication models for screening and
diagnosis methods, which is a common task in biospectroscopy
applications.14 A very powerful multivariate classication tech-
nique is the support vector machine (SVM).24 SVMs are binary
classiers that work by nding a classication hyperplane
which separates two classes or objects providing the largest
margin of separation.25 A key advantage of SVMs over most
other classical classication methods is that an SVM is capable
of classifying nonlinearly separable data.25 This makes its
performance superior to linear-dependent classication
methods, such as linear discriminant analysis (LDA).25 The
kernel function is responsible for transforming the data into
a different feature space (linear, quadratic, and polynomial,
among others) changing the classication ability of SVMs.26

SVM algorithm applications in biological data include classi-
fying low-grade cervical cytology;27 breast cancer diagnosis;28

ovarian cancer identication;29 analysis of dengue infection;30

and classifying Candida fungi.31

Data reduction and variable selection methods can be
coupled with the SVM algorithm in order to speed up compu-
tational analysis. A common method of data reduction is prin-
cipal component analysis (PCA).32 PCA reduces the original data
to a few principal components (PCs) having most of the original
explained variance;32 and the scores on each PC can be used as
classication variables for the SVM. Among the variable selec-
tion methods, successive projections algorithm (SPA)33 and
genetic algorithm (GA)34 have found many applications in bio-
logical data.17,18 SPA reduces the original data to few variables by
minimizing its collinearity,33 while GA reduces the data
following an evolutionary process where the ttest set of vari-
ables is chosen.34 Both algorithms maintain the original data
dimension, being consequently used as a tool to search for
specic molecular fragments, also called biomarkers.14

In this paper, we have applied different types of algorithms
based on PCA-SVM, SPA-SVM, and GA-SVM with different kernel
functions (linear, quadratic, 3rd order polynomial, radial basis
function, and multilayer perceptron) as a rapid and non-
destructive method to discriminate Cryptococcus gattii and
Cryptococcus neoformans fungal species based on ATR-FTIR
spectroscopy. In addition, a tentative assignment of possible
biomarkers involved in differentiating these fungal species is
performed.

Methods
Sample preparation

In this study, 28 isolated samples from UFPI (Universidade
Federal do Piaúı); IMT/SP (Instituto de Medicina Tropical de
São Paulo), Veterinary Hospital-UNESP, campus Botucatu (SP),
FioCruz mycological collection and recently isolated fungus
from Giselda Trigueiro Hospital (Natal/RN/Brazil) were used.
Genotyping of the isolated fungus in culture on Sabouraud Agar
with Chloramphenicol (50 mg L�1) was done at the Institute of
Tropical Medicine of RN at UFRN, using PCR-RFLP of the URA5
gene as previously described,4 under approval of the ethics
committee, number 51050415.6.0000.5537.

These fungi were incubated for 48 hours at a temperature of
30 �C until satisfactory growth is achieved. Yeast cells were
inactivated for biosafety handling in the spectroscopy equip-
ment by placing some yeast colonies in 1.0 mL of para-
formaldehyde solution at 4% plus phosphate buffer (1 mol L�1)
v/v, and in 1.5 mL eppendorf tubes for cell attachment to
inactivate yeast cells. The nal solution was added to 28 tubes
with 28 different Cryptococcus isolates. Aer 3 hours at room
temperature, the tubes with cells were placed under refrigera-
tion at�20 �C until the next step. For spectra reading, the tubes
were put at room temperature until defrosted, and then
centrifuged for 10 minutes at 5000g for cell precipitation. The
supernatant was removed and the cells were washed with 1.0
mL of sterile saline solution (0.95% w/v). The tubes were
maintained at 4 �C until spectroscopy reading.

ATR-FTIR spectroscopy

The ATR-FTIRmeasurements (n¼ 280, 10 replicates of each one
of the 28 C. neoformans (n ¼ 14) and C. gattii (n ¼ 14) samples)
were recorded using a Bruker VERTEX 70 FTIR spectrometer
(Bruker Optics Ltd., UK) with Helios ATR attachment containing
a diamond crystal internal reective element and a 45 incidence
angle of IR beam. The ATR-FTIR spectra of fungal samples were
acquired in the range of 400–4000 cm�1 with a resolution of 4
cm�1. Each spectrum was collected at 16 scans in the absor-
bancemode. Approximately 50 mL of each sample was applied to
the ATR crystal immediately following collection of each back-
ground. A small piece of aluminum foil was placed on the
sample to ensure that no air bubbles were trapped on the crystal
surface and to improve the signal-to-noise ratio of the spectra.35

The ATR crystal was cleaned with 70% v/v alcohol and a new
background was collected prior to the analysis of a new sample
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and compared to the rst background to ensure no interference
in the sample signal.

Computational analysis

Computational analysis was performed within a Matlab R2012b
environment (MathWorks, USA) by using PLS Toolbox version
7.9.3 (Eigenvector Research, Inc., USA) and homemade algo-
rithms. Raw spectral data were pre-processed by cutting the
region of 1800–900 cm�1, followed by normalization to the
amide I peak (�1650 cm�1)15 and baseline correction.

Samples for training (n ¼ 196), validation (n ¼ 42), and
prediction (n ¼ 42) sets were selected using the Kennard–Stone
uniform sampling selection algorithm.36 The training set was
used to build the classication models, and the validation set to
evaluate its internal performance. The prediction set was only
used in the nal classication evaluation.

The pre-processed spectra were utilized in the classication
algorithms as follows: rst, data reduction was performed by
means of PCA, SPA, and GA; utilizing PCA, the scores on the rst
PCs were utilized as classication variables for the SVM;
whereas during SPA and GA, the selected variables having the
lowest average risk of miss classication G were utilized as
classication variables for the SVM. The G cost function is
calculated in the validation set as18

G ¼ 1

NV

XNV

n¼1

gn; (1)

where NV is the number of validation samples; and gn is dened
as,

gn ¼
r2
�
xn;mIðnÞ

�
minIðmÞsIðnÞr2

�
xn;mIðmÞ

� (2)

In eqn (2), the numerator is the squared Mahalanobis
distance between the object xn (of class index In) and the sample
mean mI(n) of its true class; whereas the denominator is the
squared Mahalanobis distance between the object xn and the
mean mI(m) of the closest wrong class. GA was performed
through 80 generations, having 160 chromosomes each.
Crossover and mutation probability were set to 60% and 10%,
respectively. The algorithm was repeated three times and the
best result was chosen.

Thereaer, the PCA-SVM, SPA-SVM, and GA-SVM models
were constructed. Different types of SVM kernels were utilized:
linear (L), quadratic (Q), 3rd order polynomial (P), radial basis
function (RBF), and multilayer perceptron (MPL). Such kernels
transform the data into a feature space and are responsible for
the SVM classication ability.26 These kernels are calculated as
follows:26,37

Linear,

K(xi,zj) ¼ xTi zj (3)

Quadratic,

K(xi,zj) ¼ (s + xTi zj)
2, s $ 0 (4)

3rd order polynomial,

K(xi,zj) ¼ (s + xTi zj)
3, s $ 0 (5)

Radial basis function (RBF),

K(xi,zj) ¼ exp(�gkxi � zjk2) (6)

Multilayer perceptron (MLP),

K(xi,zj) ¼ tan h(k1x
T
i zj + k2) (7)

where xi and zj are sample measurement vectors; s is a constant;
g is the parameter that determines the RBF width; and k1 and k2

are constants. The SVM classier takes the form of:

f ðxÞ ¼ sign

 XNSV

i¼1

aiyiK
�
xi; zj

�þ b

!
(8)

where NSV is the number of support vectors; ai is the Lagrange
multiplier; yi is the class membership (�1); K(xi,zj) is the kernel
function; and b is the bias parameter.26,37

By using these distinct types of kernel functions, 15 algo-
rithms were utilized for classifying the fungal species: PCA-
SVM-L, PCA-SVM-Q, PCA-SVM-P, PCA-SVM-RBF, PCA-SVM-
MLP, SPA-SVM-L, SPA-SVM-Q, SPA-SVM-P, SPA-SVM-RBF, SPA-
SVM-MLP, GA-SVM-L, GA-SVM-Q, GA-SVM-P, GA-SVM-RBF,
and GA-SVM-MLP. In the RBF kernel, the g parameter was set
to 1; and in the MLP kernel, the k1 and k2 were respectively set to
1 and �1. The s parameter was set to 0 for quadratic and 3rd

order polynomial kernels.

Statistical validation

The models were statistically evaluated according to accuracy,
sensitivity, specicity, F-score, and G-score. Accuracy is related
to the percentage of correct classication achieved by the
model; sensitivity measures the proportion of positive results
that are correctly identied; specicity measures the proportion
of negative results that are correctly identied; F-score repre-
sents the weighted average of the precision and sensitivity; and
G-score accounts for the model precision and sensitivity
without the inuence of positive and negative class sizes.38,39

These parameters were calculated as follows:38,39

Accuracy ð%Þ ¼ 100�
 
1

N

XH
h¼1

y*h

!
� 100 (9)

Sensitivity ð%Þ ¼ TP

TPþ FN
� 100 (10)

Specificity ð%Þ ¼ TN

TNþ FP
� 100 (11)

F -score ¼ 2� sensitivity� specificity

sensitivityþ specificity
(12)

G-score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity� specificity

p
(13)

This journal is © The Royal Society of Chemistry 2017 Anal. Methods

Paper Analytical Methods

Pu
bl

is
he

d 
on

 1
2 

A
pr

il 
20

17
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

id
ad

e 
Fe

de
ra

l d
o 

R
io

 G
ra

nd
e 

do
 N

or
te

 o
n 

23
/0

5/
20

17
 2

0:
57

:3
5.

 
View Article Online

http://dx.doi.org/10.1039/c7ay00428a


where N is the total number of samples;H is the total number of
classes; y*h is the number of samples incorrectly classied in the
h class; TP is the number of true positives; TN is the number of
true negatives; FP is the number of false positives; and FN is the
number of false negatives.

Results and discussion

Cryptococcus gattii (C. gattii) and Cryptococcus neoformans
(C. neoformans) fungals samples were acquired by ATR-FTIR
spectroscopy in the region of 3200–800 cm�1. The raw spectra
were preprocessed by cutting the spectra at 1800–900 cm�1

corresponding to the biological ngerprint region; followed by
normalization to the amide I peak (�1650 cm�1) and baseline
correction. The preprocessed spectra are shown in Fig. 1.

The difference in the between-mean spectrum of C. gattii and
C. neoformans is shown in Fig. 2a. In this gure, it is possible to
observe that the large difference between the class' spectra is in
the amide I region (�1650 cm�1), where there is an absorbance
difference close to �4.5 � 10�3 (�4.6%). The negative signal
implies that this band is more intense in the C. neoformans class.
A less intense difference between the class-mean is observed at
�1035 cm�1, corresponding to glycogen bands.40 In addition, the
spectral difference close to 900 cm�1 increases due to phospho-
diester and protein phosphorylation absorptions.40,41

In order to classify these fungal species, the SVM was used as
a classication technique based on PCA as data reduction; and
SPA and GA as variable selection methods. The PCA model
applied to these data reduced the 468 variables (as wave-
numbers inside the 1800–900 cm�1 range) to only 3 PCs,
accounting for 99.98% of explained cumulative variance. Fig. 2b
shows the PCA loadings on PC1, PC2 and PC3. In this gure, the
loadings on PC1 which account for the largest variance from the
original data (99.32% of explained variance) have higher coef-
cients in the amide I peak region (�1650 cm�1), coinciding
with the largest between-mean spectrum difference depicted in
Fig. 2a. The loadings on PC2 (0.51% of explained variance) have
higher coefficients in the phosphodiester and protein phos-
phorylation region (�900 cm�1). The loadings on PC3 (0.15% of
explained variance) show high coefficients in the glycogen
region (�1035 cm�1). These bands evidenced by PCA loadings

are most important for class differentiation in the PCA-SVM-
based models, which were built using ve types of kernel
functions: linear (PCA-SVM-L), quadratic (PCA-SVM-Q), 3rd

order polynomial (PCA-SVM-P), RBF (PCA-SVM-RBF), and MLP
(PCA-SVM-MLP).

In addition to PCA, SPA and GA were applied to reduce the
number of variables and be further used with SVM classiers.
The accuracy for each SVM-based algorithm in training, vali-
dation, and prediction set is shown in Table 1.

The most accurate PCA-SVM algorithm in the prediction set
was composed of MLP kernel (PCA-SVM-MPL), which had
85.7% accuracy, whereas the most accurate for SPA-SVM and

Fig. 1 Pre-processed spectra of C. gattii (blue color) and C. neofor-
mans (red color) classes.

Fig. 2 (a) Difference between mean spectra of C. gattii and C. neo-
formans classes. (b) PCA loadings on PC1 (blue color), PC2 (red color),
and PC3 (green color).

Table 1 Accuracy (%) for SVM-based algorithms in training, validation,
and prediction set

Training Validation Prediction

PCA-SVM-L 85.7 88.1 78.6
PCA-SVM-Q 84.7 88.1 78.6
PCA-SVM-P 91.3 83.3 76.2
PCA-SVM-RBF 84.2 88.1 78.6
PCA-SVM-MLP 83.2 85.7 85.7
SPA-SVM-L 85.7 88.1 78.6
SPA-SVM-Q 92.9 92.9 92.9
SPA-SVM-P 98.0 100 100
SPA-SVM-RBF 93.4 92.9 90.5
SPA-SVM-MLP 77.0 76.2 83.3
GA-SVM-L 91.3 90.5 81.0
GA-SVM-Q 98.0 95.2 95.2
GA-SVM-P 99.5 97.6 100
GA-SVM-RBF 96.4 95.2 97.6
GA-SVM-MLP 72.4 66.7 71.4
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GA-SVM had 3rd polynomial kernel (SPA-SVM-P and GA-SVM-P)
with an accuracy of 100%. The classication performance by
means of sensitivity, specicity, F-score, and G-score for PCA-
SVMs, SPA-SVMs, and GA-SVMs models is shown in Fig. 3.

As shown in Fig. 3, the PCA-SVM algorithm with the best
classication performance was PCA-SVM-MPL, achieving
sensitivity, specicity, F-score, and G-score equal to 85.7%. For
variable selection, the best algorithms were SPA-SVM-P and GA-
SVM-P, achieving sensitivity, specicity, F-score, and G-score
equal to 100%. These classication rates of 100% show the
model's ability to correct the classication of all samples in
which both positive and negative results were correctly identi-
ed. The selected variables by SPA-SVM are shown in Table 2.
The percentage of absorbance variation (DA) between the
classes at each selected wavenumber is also shown in this table.

Nine original wavenumbers were selected from 468 by SPA-
SVM algorithms as classication variables. From the selected
wavenumbers, absorbance at 1635 cm�1 had the most intense
variation between the C. gattii and C. neoformans classes, with
a variation of �4.4% (Table 2). This absorption is characteristic
of the amide I b-sheet structure or proportions of b-sheet
secondary structures.40 The selected wavenumber at 906 cm�1

had the second largest DA (�2.4%). This wavenumber is in the
phosphodiester region, composed of stretching of collagen and
glycogen bands. The wavenumbers at 1443 cm�1 and 1745 cm�1

are respectively associated with the CH bending and symmetric
stretching vibration of polysaccharides.40 The polysaccharide
capsules composed of 90–95% glucuronoxylomannan (GXM)
and 5% galactoxylomannan (GalXM) determine the serotypes of
C. gattii (serotypes B and C) and C. neoformans (serotypes A, D
and AD) fungi,4 therefore being important for class differenti-
ation. The less intense DA for the selected wavenumbers by the
SPA-SVM algorithm was found at 1541 cm�1, a band of amide II
absorption (N–H bending coupled to C–N stretching),40 which is
characteristic of proteins predominantly in b-sheet
conformation.42

The variables selected by the GA-SVM algorithm are shown in
Table 3. In this case, GA-SVM selected 12 wavenumbers as
classication variables. Similar to Table 2, most of them have
negative DA values. These negative DA values show that most
selected wavenumbers have more intense absorption bands in
the C. neoformans class. The higher absorbance in this class
could be due to C. neoformans generally having a higher
concentration of metabolites than C. gattii,43 therefore
increasing its absorption.

The higher DA for the selected wavenumbers by the GA-SVM
algorithm (Table 3) is at 912 cm�1 (�2.2%). This value is close to
the value obtained by the SPA-SVM algorithm at 906 cm�1 as
shown in Table 2, and represents the phosphodiester region.
The second largest DA was found at 991 cm�1 (DA ¼ �1.2%),
being assigned as the vibration of C–O in ribose.40 This region is
also a characteristic of other carbohydrate molecules,15 there-
fore its signal could have contributions from more than one
biomarker.

Amide I absorption was identied at 1697 cm�1 with DA of
�1.0%. This band is a characteristic of high frequency vibration
of an antiparallel amide I b-sheet (in-plane C]O stretching

Fig. 3 Classification performance parameters (sensitivity, specificity,
F-score, and G-score) for all SVM-based algorithms applied to
discriminate C. gattii and C. neoformans classes.

Table 2 Selected variables by SPA-SVM-based algorithms and
tentative assignment of possible biomarkers

Wavenumber
(cm�1)

Tentative biomarker
assignmenta DAb (%)

�906 Phosphodiester �2.4
�964 C–C, C–O deoxyribose �0.8
�999 Ring n(C–C)–d(C–H) �1.3
�1041 Glycogen �1.3
�1086 ns(PO2

�) DNA/RNA �0.7
�1443 d(CH) polysaccharides +0.4
�1541 Amide II +0.03
�1635 Amide I �4.4
�1745 ns(C]O)

polysaccharides
+0.2

a n ¼ stretching vibration; d ¼ bending vibration; ns ¼ symmetric
stretching vibration. b Positive signal (+) indicates higher absorbance
in the C. gattii class; negative signal (�) indicates higher absorbance
in the C. neoformans class.

Table 3 Selected variables by GA-based algorithms and tentative
assignment of possible biomarkers

Wavenumber
(cm�1)

Tentative biomarker
assignmenta DAb (%)

�912 Phosphodiester �2.2
�955 ns(PO4

3�) �0.8
�978 OCH3

polysaccharides
�0.9

�991 C–O ribose �1.2
�1070 ns(PO2

�) DNA/RNA �1.0
�1147 C–O oligosaccharides �0.3
�1248 nas(PO2

�) DNA +0.05
�1278 Amide III +0.1
�1323 Amide III +0.2
�1508 Amide II +0.3
�1697 Amide I �1.0
�1734 ns(C]O) lipids +0.1

a ns ¼ symmetric stretching vibration; nas ¼ asymmetric stretching.
b Positive signal (+) indicates higher absorbance in the C. gattii class;
negative signal (�) indicates higher absorbance in the C. neoformans
class.
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weakly coupled to C–N stretching and in-plane N–H bond
bending).40 Other vibrations of almost the sameDAwas found at
955 cm�1 (symmetric stretching of PO4

3�), 978 cm�1 (OCH3

vibration in polysaccharides), and 1070 cm�1 (symmetric PO2
�

stretching in DNA/RNA).40 In this case, the inuence of the
polysaccharide capsules and nucleic acid contributions in the
fungal species discrimination is clear. Amide II and amide III
had very small DA contributions (+0.1–0.3%). Amide II absorp-
tion at 1508 cm�1 can be caused by N–H bending coupled to
C–N stretching of amide II; whereas amide III absorptions at
1278 cm�1 and 1323 cm�1 are associated with vibration modes
of collagen proteins in amide III. The lower DA for GA-SVM
algorithms was found at 1248 cm�1 (DA ¼ +0.05) and corre-
sponds to asymmetric PO2

� stretching in DNA.40

The results shown here corroborate to the development of
a rapid and non-destructive method for classifying C. gattii and
C. neoformans fungal species with high accuracy, sensitivity, and
specicity by using ATR-FTIR spectroscopy coupled with SVM-
based techniques. The non-destructive nature of ATR-FTIR
spectroscopy enables to reuse the samples in further studies,
including genotyping by PCR-based methods. In addition,
variable selection techniques (SPA and GA) can help to identify
possible biomarkers responsible for class differentiation.

Furthermore, this research can be translated to real-world
continuous monitoring by using these techniques to analyze
cerebrospinal uid of infected patients.1 ATR-FTIR spectroscopy
combined with chemometric techniques could be used to
reduce the volume of the uid utilized in the analysis, since the
procedure to extract this uid is quite invasive; as well as to
reduce the cost, since the actual detection of both fungi follows
genotyping procedures using molecular methods. In addition,
this study could be used as a support to try the detection of both
fungi in serum, which would reduce drastically the invasiveness
of the procedure, allied to the advantages of using FTIR spec-
troscopy reported before.

Conclusion

PCA, SPA and GA were coupled to SVM classiers to discrimi-
nate C. gattii and C. neoformans fungal species. Five different
types of SVM kernels (linear, quadratic, 3rd order polynomial,
RBF and MLP) were evaluated by means of quality metrics such
as accuracy, sensitivity and specicity providing high classi-
cation rates. SPA-SVM and GA-SVM algorithms with 3rd order
polynomial kernels (SPA-SVM-P and GA-SVM-P) achieved clas-
sication rates of 100% in accuracy, sensitivity, specicity, F-
score, and G-score, showing these models to have the ability to
provide reliable class differentiation. The SPA-SVM algorithm
was highly inuenced by amide I (1635 cm�1) and phospho-
diester (906 cm�1) vibrations. In addition, the GA-SVM algo-
rithm had higher inuences of C–O ribose (991 cm�1) and
phosphodiester (912 cm�1) vibrations. This report supports the
development of an alternative method to classify C. gattii and C.
neoformans fungal species using ATR-FTIR spectroscopy, which
could be translated to real applications using cerebrospinal
uid in the future, for example. This could speed up the analysis
of these fungi, thereby increasing its analytical frequency,

reducing possible costs with reagents, and providing non-
destructive data acquisition.
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On the synergy between silver nanoparticles and
doxycycline towards the inhibition of
Staphylococcus aureus growth

Heloiza F. O. Silva,a Rayane P. de Lima,a Fernanda S. L. da Costa,a Edgar P. Moraes,a

Maria C. N. Melo,b Celso Sant’Anna,c Mateus Eugênioc and Luiz H. S. Gasparotto*a

In a previous paper (RSC Adv., 2015, 5, 66886–66893), we showed that the combination of silver nanoparticles

(NanoAg) with doxycycline (DO) culminated in an increased bactericidal activity towards E. coli. Herein we further

investigated themetabolic changes that occurred on Staphylococcus aureus upon exposure to NanoAgwith the

help of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) coupledwithmultivariate

data analysis. It has been discovered that the combination of DOwith NanoAg producedmetabolic changes in S.

aureus that were not simply the overlap of the treatments with DO and NanoAg separately. Our results suggest

that DO and NanoAg act synergistically to impede protein synthesis by the bacteria.

1 Introduction

It is widely known that the indiscriminate administration of
antibiotics has rendered pathogens resistant to a variety of broad-
spectrum antibiotics.1 In order to circumvent this issue, nano-
science has worked in conjunction with biology and medicine to
develop more efficient bactericidal agents.2 As examples, silver
nanoparticles have been used against E. coli3,4 and gold nano-
particles for killing S. aureus.5 Some researchers have attempted
to combine nanoparticles with antibiotics to generate more
potent antimicrobial agents.6 Due to their large surface-area-to-
volume ratio and biocompatibility, inorganic nanoparticles are
considered ideal candidates for carrying large amounts of anti-
biotics without compromising their activity. Li et al.7 demon-
strated that the combination of silver nanoparticles with
amoxicillin produced stronger bactericidal effect towards
Escherichia coli in comparison to the administration of the
components separately. Our group8 showed that the conjugation
of polyvinylpyrrolidone (PVP)-capped silver nanoparticles
(NanoAg) with doxycycline (DO) yielded quite a potent agent for
the inhibition of E. coli. An interesting question that follows is
what biological changes occur upon contacting bacteria with
NanoAg and DO-modied NanoAg. With that information in
hand, it would be possible to fashion NanoAg with superior
biocidal activities against a broader range of pathogens.

Silver nanoparticles may act via four main routes:9 (1)
adhesion to the microbial cell membrane causing damage and
altering transport activity; (2) penetration inside the cell leading
to organelle (ribosomes, DNA, RNA) dysfunction; (3) oxidation
of proteins, lipids and DNA bases through oxidative stress; (4)
alteration of cell signaling. Thus, as multiple factors are altered
simultaneously, it is logical to measure the metabolism directly
instead of selecting a single marker at a time. To that end,
infrared spectroscopy (FT-IR) emerges as an interesting tech-
nique for metabolic ngerprinting,10 owing to its capability to
examine proteins, carbohydrates, lipids, amino acids and fatty
acids concurrently. Coupled with multivariate data analysis,10

FT-IR renders metabolic ngerprinting an excellent tool to
discriminate between groups of related biological samples, in
addition to being rapid and non-destructive.

In the present study, we exposed S. aureus to silver nano-
particles modied with doxycycline (DO, a member of the tetra-
cycline group) and employed FT-IR coupled with multivariate
data analysis to access variations of the S. aureus metabolism.
DO-functionalized NanoAg caused the greatest alteration in the
metabolism of S. aureus in comparison to that of bacteria treated
with DO and NanoAg separately, which made possible the
discrimination of bacteria subjected to those different treat-
ments. These results corroborate nicely our previous work8 in
which we showed that the combination of DO with NanoAg
delivered an increased antimicrobial activity towards E. coli.

2 Experimental section
2.1 Chemicals and reagents

Sodium hydroxide, glycerol, silver nitrate, polyvinylpyrrolidone
(PVP; molecular weight ¼ 10 000), and doxycycline hyclate
(>98%) were obtained from Sigma-Aldrich Chemical Co (MO,
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USA). Staphylococcus aureus (ATCC® 25923™) was cultivated in
laboratory.

2.2 Production and characterization of NanoAg

NanoAg were produced according to a reported method.11

Briey, all glassware was cleaned thoroughly with a KMnO4 +
NaOH solution and piranha solution. The following aqueous
stock solutions were then produced: 50 mmol L�1 AgNO3, 100 g
L�1 PVP and a solution containing 1.0 mol L�1 NaOH +
1.0 mol L�1 glycerol. In a beaker, determined volumes of the
PVP and AgNO3 solutions were dissolved in water to yield a 5 ml
solution. In a separate beaker, a known volume of the NaOH +
glycerol solution was mixed with water to generate another 5 ml
solution. The glycerol–NaOH solution was poured into the
AgNO3–PVP one to yield the following nal concentrations:
0.10 mol L�1 glycerol and NaOH, 10.0 g L�1 PVP and 1.0 mmol
L�1 AgNO3. The NanoAg colloidal solutions had then their pH
adjusted to 7 by addition of diluted HCl.

UV-VIS was performed with an Ocean Optics USB-650 Tide
spectrophotometer. FTIR in ATR mode was carried out with
a Bruker Vertex 70 spectrophotometer and Transmission Elec-
tron Microscopy (TEM) images were acquired with a FEI Tecnai
G2 Spirit BioTWIN microscope operating at 120 kV.

2.3 Conjugation of DO with NanoAg

Conjugation of NanoAg with DO was achieved by simple incu-
bation according to a previous protocol.8 Five milliliters of a 200
mg ml�1 doxycycline stock solution were added to the same
volume of the NanoAg colloidal solution, generating a 10 ml
DO–NanoAg solution. The nal concentrations of NanoAg and
DO in the conjugate were 0.2 � 10�9 mol L�1 and 0.2 �
10�3 mol L�1, respectively. All the above-mentioned techniques
were employed to characterize the NanoAg–antibiotic complex.

2.4 Exposition of S. aureus to DO, NanoAg and DO–NanoAg

Staphylococcus aureus (strain ATCC® 25923™) was cultured in
Brain-Heart-Infusion (BHI) agar medium on a Petri dish at 37 �C
for 24 h. A microbiological strain suspension was standardized at

0.5 McFarland which is equivalent to 1.0� 108 CFU ml�1 in 0.9%
sterile saline medium. The suspension was then swabbed onto
another Petri dish containing sterile Müller–Hinton agar medium
and allowed to grow at 37 �C for 12 h. Aerwards, 1.5 ml of the
antimicrobial agents (NanoAg, DO or the DO–NanoAg conjugate)
was applied on the bacterial colony with the aid of a micropipette.
The plates were incubated for further 12 h at 37 �C.

2.5 ATR-FTIR analysis

Bacteria were gently scraped off the Petri dish with a sterile
metal handle, placed on the sample holder of the ATR-FTIR
equipment, and covered with a piece of aluminum foil. The
latter enhances the FTIR signal without interference due to its
featureless background signal.12 FTIR spectra were acquired in
quintuplicate from each sample of the following groups (24
samples per group): control (S. aureus without any treatment),
DO (S. aureus treated with doxycycline), NanoAg (S. aureus
treated with silver nanoparticles), and DO–NanoAg (S. aureus
treated with the conjugate), adding up to a total of 480 spectra.
Measurements were conducted on a Bruker VERTEX 70 FTIR
spectrometer (Bruker Optics Ltd., Coventry, UK) with a Helios
ATR attachment containing a diamond crystal internal reec-
tive element and a 45� incidence angle of the IR beam. Each
spectrum was a result of 16 scans at a spectral resolution of
4 cm�1. Aer each acquisition the sample holder was cleaned
with 70% alcohol (v/v).

2.6 Chemometric procedure

Data import, pre-treatment and chemometric procedures were
carried out with MATLAB R2014a soware (MathWorks, USA)
with the PLS-toolbox version 7.5.2 (Eigenvector Research, Inc.,
Wenatchee, WA). Raw spectra were pre-processed by selecting
the range of 1800 cm�1 to 900 cm�1 (468 wavenumbers at
4 cm�1 spectral resolution) and mean-centering. PCA model
was constructed with 96 samples (24 samples of each class:
control, DO, DO + NanoAg, NanoAg), using 4 PCs, that explained
97.6% of total variance. PLS-DA models were made for each two
classes of treatments (control, DO, DO + NanoAg, NanoAg).

Fig. 1 (A) UV-VIS spectra of DO mixed with AgNPs (red curve) and the mathematical combination of the DO and NanoAg pure spectra. (B)
Chemical structure of doxycycline.
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Using the algorithm Kennard–Stone (KS), separately to each
class, the samples were divided into training/validation (70%)
and prediction sets (30%). Themodel performance was evaluated
by gures of merit: sensitivity, specicity and confusion matrix.

3 Results and discussion
3.1 Synthesis and characterization of NanoAg

In this study, NanoAg were produced with glycerol in alkaline
medium as reducing agent at room temperature. Since glycerol is
produced nowadays as a byproduct of the biodiesel fabrication, its
supply has surpassed the current demand making glycerol a rela-
tively inexpensive chemical.8 Due to its biodegradability under
aerobic conditions, non-toxicity, and low price, glycerol has
become more attractive for generating nanoparticles than estab-
lished reducing chemicals such as formamide, sodium borohy-
dride and hydrazine. Fig. 1A suggests that NanoAg andDO interact
to some extent. The UV-VIS spectrum of the mathematical
combination of pure DO and NanoAg spectra (blue curve) shows
a maximum at 410 nm corresponding to the characteristic Surface
Plasmon Resonance (SPR) of PVP-stabilized spherical NanoAg,
a peak at 365 nm due to the p-electron system located in the BCD
chromophore (see Fig. 1B), and absorptions below 300 nm due to
a combined contribution of the BCD system with the tricarbonyl-
methane keto–enol system comprised in ring A.13 The mixing of
DO with NanoAg (red curve) causes all DO absorptions to shi,
implying an interaction of that system with the NanoAg. In
a previous study,8 we deeply investigated the interaction between
DO and NanoAg via FTIR, showing that the capping agent, the
PVP, was of paramount importance in augmenting the DO
concentration around the nanoparticles. In addition to the
chemical interaction, DO is kept in the vicinity of the particle due
to the PVP-shell structure that encapsulates the DO.14

TEM images of NanoAg (Fig. 2B and C) showed that the
conjugation with DO had practically no impact on both shape and
size distribution of NanoAg, which is an important result since it
can rule out size and shape effects on bacteriological experiments.

3.2 Exposition of S. aureus to DO, NanoAg and DO–NanoAg

3.2.1 Sample analysis and calibration/training dataset. The
objective of the present study was to apply the ATR-FTIR

spectroscopy in conjunction with PCA and PLS-DA to evaluate
the metabolic response of S. aureus aer treatment with
NanoAg, DO and DO + NanoAg. As mentioned earlier, in
a previous study we discovered that the combination of DO with
NanoAg delivered a conjugate with enhanced growth inhibition
properties against E. coli compared to the constituents admin-
istered separately.8 This result prompted us to investigate the
metabolic impact of NanoAg, DO and DO + NanoAg on S. aureus,
a simpler microorganism in terms of cell wall complexity.15

Fig. 3 presents average pre-treated spectra for each class
acquired in the “bio-ngerprint” range of 900–1800 cm�1. As
noticed, it is not straightforward to distinguish the spectra
visually, probably because the metabolic alterations upon
treatment are minute.

The spectra were then subjected to the unsupervised Prin-
cipal Components Analysis (PCA) classication model, followed
by the supervised classication of Partial Least Squares
Discriminant Analysis (PLS-DA) for the binary classication, as
shown in Fig. 4.

The plot of the PCA discrimination function with the mean
FTIR-ATR spectra (Fig. 4A) revealed a degree of segregation
between the classes, meaning that the methodology allowed for
the detection of variables that differentiate the groups which
were then compared in pairs via PLS-DA: control vs. DO, control
vs. NanoAg, and control vs. DO + NanoAg. This method indi-
cated the wavenumbers whose changes were statistically

Fig. 2 TEM images of (A) NanoAg and (B) NanoAg mixed with doxycycline.

Fig. 3 Average spectrum for each original class control, DO, DO +
NanoAg and NanoAg.
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signicant for each group. Fig. 4B–D shows the PLS-DA plots for
the three comparisons. For the determination of the best
models, a confusion matrix (Table 1) was compiled with the
values of true positive, true negative and type I and II errors.

It is possible to observe in Table 1 that of the three models
the treatments with DO and DO + NanoAg presented the
smallest errors, being classied 100% in their classes. The
NanoAg model presented a 50% accuracy rate, corroborating
the PCA discrimination function, showing that it is difficult to
nd a standard for differentiation because it presents a variance
within the very high class. The values of the parameters of
quality: sensitivity, specicity, RMSEC, RMSECV and RMSEP
were also taken into account for the three best models. All the
best models used 2 latent variables (see Table 2). These values
show that there was good classication, especially for the
control versus DO (sensibility: control 75% and DO 100% �
specicity control 100% and DO 75%) and control versus DO +
NanoAg (sensibility: control 75% and DO + NanoAg 100% �
specicity control 100% and DO + NanoAg 75%) pairs that
presented the highest values of sensitivity and specicity. These
results conrm the potential of FITR-ATR spectroscopy to detect
and identify groups with different metabolic responses of S.
aureus aer exposure to the three antimicrobials DO, NanoAg
and DO + NanoAg.

Table 3 was constructed with the aid of the most signicant
variables present in the loadings generated in each of the three
models. From these variables, the wave numbers responsible
for the discrimination were recovered. Literature data were used
to assign the characteristic group to each wave number
retrieved.

Control vs. DO. In order to investigate the control and DO
samples, as observed in Table 3, six variables were selected for
PLS-DA (1647 cm�1, 1631 cm�1, 1547 cm�1, 1543 cm�1,
1400 cm�1 and 1080 cm�1). It is interesting to note that 83.3%
of the wave numbers responsible for the discrimination
between the two classes are related to protein: amide I in 1647

Fig. 4 Multivariate data analysis of selected variables in the samples. (A) Principal Component Analysis (PCA) of variables by the four classes and
(B–D) PLS-DA by pairs.

Table 1 Confusion table for actual and predicted groups

Actual (%)

Predicted (%) Control DO
Control 75.0 0
DO 25.0 100

Control DO + NanoAg
Control 75.0 0
DO + NanoAg 25.0 100

Control NanoAg
Control 100 50.0
NanoAg 0 50.0

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 23578–23584 | 23581
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and 1631 cm�1, amide II in 1547 and 1543 cm�1 and amino acid
in 1400 cm�1. Note that only the wavelength 1647 cm�1 showed
a signicant change (p < 0.05) in absorbance upon exposure to
DO. This corroborates with the literature, since this antibiotic
belongs to the class of tetracyclines, whose mechanism of
action is the interference in the binding of the tRNA by blocking
the adhesion of aminoacyl-t-RNA, to the mRNA-ribosome

complex; in other words, DO interacts with the 30S portion of
the ribosome thereby impairing protein synthesis. It should
therefore be noted that tetracycline are classied as bacterio-
static, i.e. their interaction occurs reversibly.16,17 To this we can
attribute the absence of signicant change (p < 0.05) in the
absorbances of the other wave numbers related to the proteins.
An interesting result was the presence of the band at 1080 cm�1,
characteristic of polysaccharides. Zmantar et al.18 showed that
S. aureus ATCC 25923, the same strain used in the present study,
produces biolm aer stress and Cerca et al.19 stated that the
proteins encoded by intercellular adhesin genes (icaADBC)
synthesize polysaccharide, which contributes to the formation
of this biolm in S. aureus. In contrast to the results obtained in
Table 3, S. aureus showed a signicant increase in mean
absorbance (p < 0.05) when the DO band was treated with
1080 cm�1, a characteristic of polysaccharides.

Control vs. NanoAg. From the investigation between the
control and NanoAg samples, ve variables were selected for
SPA-LDA (1641 cm�1, 1635 cm�1, 1547 cm�1, 1543 cm�1 and
1086 cm�1). Of these wave numbers 80% are related to proteins
as well, namely 1641 cm�1 and 1635 cm�1 for amide I, while the
absorptions at 1547 and 1543 cm�1 are related to amide II.
Although NanoAg has an extensive list of studies involving its
effect against bacteria, the mechanism of action is not clearly
known.9,20 Some authors attribute such difficulty to the fact that

Table 2 Quality performance values from PLS-DA method (2 latent
variables) by ATR-FTIR spectroscopy for each category of the three
models

Accuracy (%)

Models PLS-DA (2 LVs)

Control vs.
DO

Control vs.
NanoAg

Control vs.
DO + NanoAg

Calibration
Sensibility (%) 93.8 87.5 93.8
Specicity (%) 100 62.5 100

Prediction
Sensibility (%) 75.0 100 75.0
Specicity (%) 100 50.0 100
RMSEC 0.284 0.388 0.201
RMSECV 0.339 0.443 0.222
RMSEP 0.388 0.412 0.318

Table 3 Infrared band assignments of the Gram-positive S. aureus and average absorbances of the control, DO, NanoAg and DO + NanoAg
classes presented in the regions (variables) used in the discrimination by PLS-DAa

Model Wavelength Abscontrol Abstreated Assignment Literature

Control versus DO �1647 cm�1 0.51 (0.02) 0.51 (0.01) Stretching of C]O in amide (amide I) of
structural proteins.

28–30

�1631 cm�1 0.53 (0.02) 0.52 (0.01) Stretching of C]O in amide (amide I) of
structural proteins.

28–30

�1547 cm�1 0.31 (0.02)* 0.30 (0.01)* N–H bending and C–N stretching in
amide (amide II) of structural proteins.

27–30

�1543 cm�1 0.30 (0.02) 0.30 (0.01) N–H bending and C–N stretching in
amide (amide II) of structural proteins.

27–30

�1400 cm�1 0.19 (0.02) 0.19 (0.01) –COO� symmetric stretching of amino
acid side chains and fatty acids

27–29 and 31

�1080 cm�1 0.21 (0.01)* 0.23 (0.01)* C–O–C. C–O of various polysaccharides 27–29 and 31
Control versus DO + NanoAg �1635 cm�1 0.54 (0.02)* 0.50 (0.01)* b-pleated sheet structures (amide I) of

structural proteins.
27 and 29

�1630 cm�1 0.53 (0.02)* 0.49 (0.01)* Stretching of C]O in amide (amide I) of
structural proteins.

28–30

�1543 cm�1 0.30 (0.02)* 0.27 (0.01)* N–H bending and C–N stretching in
amide (amide II) of structural proteins.

27–30

�1539 cm�1 0.29 (0.02)* 0.25 (0.01)* N–H bending and C–N stretching in
amide (amide II) of structural proteins.

27–30

�1398 cm�1 0.19 (0.02)* 0.17 (0.01)* –COO� symmetric stretching of amino
acid side chains and fatty acids

27–29 and 31

�1078 cm�1 0.21 (0.01)* 0.22 (0.01)* C–O–C. C–O of various polysaccharides 27–29 and 31
Control versus NanoAg �1641 cm�1 0.53 (0.02)* 0.50 (0.05)* Stretching of C]O in amide (amide I) 28–30

�1635 cm�1 0.54 (0.02)* 0.50 (0.05)* b-pleated sheet structures (amide I) 27 and 29
�1547 cm�1 0.31 (0.02)* 0.28 (0.03)* N–H bending and C–N stretching in

amide (amide II)
27–30

�1543 cm�1 0.30 (0.02)* 0.28 (0.03)* N–H bending and C–N stretching in
amide (amide II)

27–30

�1086 cm�1 0.21 (0.01)* 0.19 (0.02)* C–O–C. C–O of various polysaccharides 27–29 and 31

a *Different averages (p < 0.05).
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the antibacterial action is strongly dependent on the physical–
chemical parameters such as size, shape, surface charge,
concentration and colloidal state.21–26 Despite many factors,
Dakal et al.9 found that the antimicrobial action of NanoAg in
general is linked to at least four distinct mechanisms. Accord-
ing to them, the NanoAg act (A) inducing cellular toxicity
through the oxidative stress caused by the generation of reactive
oxygen species (ROS) and free radicals, (B) adhering to the
surface of the wall and cell membrane, (C) interfering in the
modulation or (D) damaging intracellular structures (mito-
chondria, vacuoles, ribosomes) and biomolecules (proteins,
lipids and DNA) aer the endocytosis of NanoAg. Based on the
selected variables (most related to proteins), we can suggest that
the path of action of NanoAg synthesized and administered in
our work was D, since aer the treatment of S. aureus with
NanoAg the mean absorbances suffered a signicant decrease
(p < 0.05), as shown in Fig. 5. The pathway suggested is that it
acts more expressively in the inhibition of protein synthesis. In
agreement with the expression in Table 3, the variable related to
the wave number 1086 cm�1 was selected which is characteristic
of polysaccharides that predominate in biolm expressed by S.
aureus aer stress.17,18 However, it was unusual to note that this
treatment with free NanoAg of DO showed a signicant
decrease (p < 0.05) in mean absorbance suggesting that action
of the nanoparticles did not allow S. aureus to effectively express
its biolm or even that it expressed, but the damage to DNA and
polysaccharides was more expressive.

Control vs. DO + NanoAg. Finally, the comparison between the
Control and DO + NanoAg samples allowed for the selection of
six variables for SPA-LDA (1635, 1630, 1543, 1539, 1398 and
1078 cm�1). Of these, 80% wave numbers are protein related, as
observed in Table 3. The wavenumber at 1635 and 1630 cm�1

are assigned to amide I, 1543 and 1539 cm�1 assigned to amide
II and 1398 cm�1 attributed to amino acid. At rst, it is possible
to observe that the treatment with the DO + NanoAg conjugate
allowed for the selection of the variables observed both in the
DO treatment and in the treatment with NanoAg. Interestingly,
the DO + NanoAg conjugate caused a signicant increase in the
mean absorbance (p < 0.001) at the 1078 cm�1 wavenumber

attributed to polysaccharides. Thus, the defense by biolm
expression was presented by S. aureus aer treatment with the
DO + NanoAg conjugate. Another important point was the
signicant decrease in mean absorbances (p < 0.05) attributed
to protein expression exhibited aer treatment with this system,
which did not occur aer treatment with DO. Based on what has
been presented so far, we can conclude that the conjugate
caused expressive metabolic responses, even though the two
starting constituents, DO and NanoAg, were at half their orig-
inal concentrations. The combination of DO and NanoAg boosts
the inhibition of protein synthesis.

4 Conclusions

Herein we have shown that FT-IR coupled with multivariate
analysis is an excellent tool to discriminate bacteria that have
been treated with DO, NanoAg and DO + NanoAg. From PCA
analysis it is clear that, although both DO and NanoAg affect
protein synthesis, their combination promotes biological
changes in S. aureus sufficient for discrimination among the
classes.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

The authors are grateful to CNPq (grant 442087/2014-4).

References

1 A. J. Alanis, Resistance to Antibiotics: Are We in the Post-
Antibiotic Era?, Arch. Med. Res., 2005, 36(6), 697–705.

2 A. J. Huh and Y. J. Kwon, “Nanoantibiotics”: A new paradigm
for treating infectious diseases using nanomaterials in the
antibiotics resistant era, J. Controlled Release, 2011, 156(2),
128–145.

3 I. Sondi and B. Salopek-Sondi, Silver nanoparticles as
antimicrobial agent: a case study on E. coli as a model for
Gram-negative bacteria, J. Colloid Interface Sci., 2004,
275(1), 177–182.

4 S. K. Rastogi, V. J. Rutledge, C. Gibson, D. A. Newcombe,
J. R. Branen and A. L. Branen, Ag colloids and Ag clusters
over EDAPTMS-coated silica nanoparticles: synthesis,
characterization, and antibacterial activity against
Escherichia coli, Nanomedicine, 2011, 7, 305–314.

5 V. P. Zharov, K. E. Mercer, E. N. Galitovskaya and
M. S. Smeltzer, Photothermal Nanotherapeutics and
Nanodiagnostics for Selective Killing of Bacteria Targeted
with Gold Nanoparticles, Biophys. J., 2006, 90(2), 619–627.

6 A. N. Brown, K. Smith, T. A. Samuels, J. Lu, S. O. Obare and
M. E. Scott, Nanoparticles Functionalized with Ampicillin
Destroy Multiple-Antibiotic-Resistant Isolates of
Pseudomonas aeruginosa and Enterobacter aerogenes and
Methicillin-Resistant Staphylococcus aureus, Appl. Environ.
Microbiol., 2012, 78(8), 2768–2774.

Fig. 5 Mean average absorbances of the control, DO, NanoAg and DO
+ NanoAg classes presented in the six regions used in the discrimi-
nation by PLS-DA.

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 23578–23584 | 23583

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ne
 2

01
8.

 D
ow

nl
oa

de
d 

on
 9

/1
1/

20
18

 8
:5

6:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c8ra02176g


7 P. Li, J. Li, C. Wu, Q. Wu and J. Li, Synergistic antibacterial
effects of b-lactam antibiotic combined with silver
nanoparticles, Nanotechnology, 2005, 16(9), 1912.

8 H. F. O. Silva, K. M. G. Lima, M. B. Cardoso, J. F. A. Oliveira,
M. C. N. Melo, C. Sant'Anna, M. Eugenio and
L. H. S. Gasparotto, Doxycycline conjugated with
polyvinylpyrrolidone-encapsulated silver nanoparticles:
a polymer's malevolent touch against Escherichia coli, RSC
Adv., 2015, 5(82), 66886–66893.

9 T. C. Dakal, A. Kumar, R. S. Majumdar and V. Yadav,
Mechanistic Basis of Antimicrobial Actions of Silver
Nanoparticles, Front Microbiol, 2016, 7, 1831.

10 D. I. Ellis and R. Goodacre, Metabolic ngerprinting in
disease diagnosis: biomedical applications of infrared and
Raman spectroscopy, Analyst, 2006, 131(8), 875–885.

11 J. F. Gomes, A. C. Garcia, E. B. Ferreira, C. Pires,
V. L. Oliveira, G. Tremiliosi-Filho and L. H. S. Gasparotto,
New insights into the formation mechanism of Ag, Au and
AgAu nanoparticles in aqueous alkaline media: alkoxides
from alcohols, aldehydes and ketones as universal
reducing agents, Phys. Chem. Chem. Phys., 2015, 17(33),
21683–21693.

12 L. Cui, H. J. Butler, P. L. Martin-Hirsch and F. L. Martin,
Aluminium foil as a potential substrate for ATR-FTIR,
transection FTIR or Raman spectrochemical analysis of
biological specimens, Anal. Methods, 2016, 8(3), 481–487.

13 S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher,
P. Matousek and M. Towrie, Fluorescence kinetics of
aqueous solutions of tetracycline and its complexes with
Mg+2 and Ca+2, Photochem. Photobiol. Sci., 2003, 2(1), 1107–
1117.

14 M. Behera and S. Ram, Inquiring the mechanism of
formation, encapsulation, and stabilization of gold
nanoparticles by poly(vinyl pyrrolidone) molecules in 1-
butanol, Appl. Nanosci., 2014, 4(1), 247–254.

15 K. D. Young, The Selective Value of Bacterial Shape,
Microbiol. Mol. Biol. Rev., 2006, 70(3), 660–703.

16 E. C. Pereira-Maia, P. P. Silva, W. B. Almeida, H. F. Santos,
B. L. Marcial, R. Ruggiero and W. Guerra, Tetraciclinas e
Glicilciclinas: Uma Visão Geral, Quim. Nova, 2010, 33(3),
700–706.

17 I. Chopra and M. Roberts, Tetracycline Antibiotics: Mode of
Action, Applications, Molecular Biology, and Epidemiology
of Bacterial Resistance, Microbiol. Mol. Biol. Rev., 2001,
65(2), 232–260.

18 T. Zmantar, B. Kouidhi, H. Miladi, K. Mahdouani and
A. Bakhrouf, A Microtiter plate assay for Staphylococcus
aureus biolm quantication at various pH levels and
hydrogen peroxide supplementation, New Microbiol., 2010,
33(1), 137–145.

19 N. Cerca, J. L. Brooks and K. K. Jefferson, Regulation of the
Intercellular Adhesin Locus Regulator (icaR) by SarA, B,

and IcaR in Staphylococcus aureus, J. Bacteriol., 2008,
190(19), 6530–6533.

20 S. Prabhu and E. K. Poulose, Silver nanoparticles:
mechanism of antimicrobial action, synthesis, medical
applications, and toxicity effects, Int. Nano Lett., 2012,
2(32), 2–10.

21 S. Pal, Y. K. Tak and J. M. Song, Does the Antibacterial
Activity of Silver Nanoparticles Depend on the Shape of the
Nanoparticle? A Study of the Gram-Negative Bacterium
Escherichia coli, Appl. Environ. Microbiol., 2007, 73(6),
1712–1720.

22 R. Bhattacharya and P. Mukherjee, Biological properties of
“naked” metal nanoparticles, Adv. Drug Delivery Rev., 2008,
60(1), 1289–1306.

23 M. K. Rai, S. D. Deshmukh, A. P. Ingle and A. K. Gade, Silver
nanoparticles: the powerful nanoweapon against multidrug-
resistant bacteria, J. Appl. Microbiol., 2012, 112(1), 841–852.

24 M. R. Nateghi and H. Hajimirzababa, Effect of silver
nanoparticles morphologies on antimicrobial properties of
cotton fabrics, J. Text. Inst., 2014, 105(1), 806–813.

25 A. Abbaszadegan, Y. Ghahramani, A. Gholami,
B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and
H. Sharghi, The Effect of Charge at the Surface of Silver
Nanoparticles on Antimicrobial Activity against Gram-
Positive and Gram-Negative Bacteria: A Preliminary Study,
J. Nanomater., 2015, 2015(1), 1–8.

26 F. Zhang, J. A. Smolen, S. Zhang, R. Li, P. N. Shah, S. Cho,
H. Wang, J. E. Raymond, C. L. Cannon and K. L. Wooley,
Degradable polyphosphoester-based silver-loaded
nanoparticles as therapeutics for bacterial lung infections,
Nanoscale, 2015, 7, 2265–2270.

27 K. Maquelin, C. Kirschner, L. P. Choo-Smith, N. V. D. Braak,
H. Ph Endtz, D. Naumann and G. J. Puppels, Identication of
medically relevant microorganisms by vibrational
spectroscopy, J. Microbiol. Methods, 2002, 51(1), 255–271.

28 W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge and
S. C. B. Myneni, Elucidation of Functional Groups on Gram-
Positive and Gram-Negative Bacterial Surfaces Using
Infrared Spectroscopy, Langmuir, 2004, 20, 11433–11442.

29 D. Naumann, Infrared Spectroscopy in Microbiology,
Encyclopedia of Analytical Chemistry, ed. R. A. Meyers, John
Wiley & Sons Ltd, Chichester, 2000, pp. 102–131.

30 Y. Burgula, D. Khali, S. Kim, S. S. Krishnan, M. A. Cousin,
J. P. Gore, B. L. Reuhs and L. J. Mauer, Review Of Mid-
Infrared Fourier Transform-Infrared Spectroscopy
Applications For Bacterial Detection, J. Rapid Methods
Autom. Microbiol., 2007, 15(1), 146–175.

31 B. Buszewski, E. Dziubakiewicz, P. Pomastowski,
K. Hrynkiewicz, J. Ploszaj-Pyrek, E. Talik, M. Kramer and
K. Albert, Assignment of functional groups in Gram-
positive bacteria. Analytical Method Development and
Validation: A Concise Review, J. Anal. Bioanal. Tech., 2015,
6(1), 1–8.

23584 | RSC Adv., 2018, 8, 23578–23584 This journal is © The Royal Society of Chemistry 2018

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ne
 2

01
8.

 D
ow

nl
oa

de
d 

on
 9

/1
1/

20
18

 8
:5

6:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c8ra02176g


 

89 
 

APÊNDICE C 

 

The Use of Near Infrared Spectroscopy and Multivariate Calibration 

for Determining the Active Principle of Olanzapine in a 

Pharmaceutical Formulation 

 

Marcelo V. P. Amorim  

 

Fernanda S. L. Costa       Cícero F. S. Aragão  

Kássio M. G. Lima 

 

J. Braz. Chem. Soc., 2016, 00, 1-7. 

 

 

 

Contribuição: 

 Ajudei na escrita do artigo; 

 Ajudei na construção dos modelos de regressão PLS; 

 Ajudei na escrita da primeira versão do manuscrito. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fernanda S. L. Costa                                                                 Prof. Kássio M. G. Lima 



Short Report
J. Braz. Chem. Soc., Vol. 00, No. 00, 1-7, 2016.

Printed in Brazil - ©2016  Sociedade Brasileira de Química
0103 - 5053  $6.00+0.00

http://dx.doi.org/10.21577/0103-5053.20160233

*e-mail: kassiolima@gmail.com

The Use of Near Infrared Spectroscopy and Multivariate Calibration for 
Determining the Active Principle of Olanzapine in a Pharmaceutical Formulation

Marcelo V. P. Amorim,a,b Fernanda S. L. Costa,c Cícero F. S. Aragãob and 
Kássio M. G. Lima*,c

aNúcleo de Pesquisa em Alimentos e Medicamentos, bLaboratório de Controle de Qualidade, 
Departamento de Farmácia and cGrupo de Química Biológica e Quimiometria, Instituto de 

Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

The aim of this study was to quantitatively determine the olanzapine in a pharmaceutical 
formulation for assessing the potentiality of near infrared spectroscopy (NIR) combined with 
partial least squares (PLS) regression. The method was developed with samples based on a 
commercial formulation containing olanzapine and seven excipients. Laboratory and commercial 
samples (n = 27 and 18, respectively) were used by defining the calibration and prediction sets. 
The method was validated in the range from 1.0 to 12.5 of olanzapine per 100 mg of powder 
(average mass 210 mg), by accuracy, precision, linearity, analytical sensitivity, limit of detection 
and quantification. The multivariate model developed for olanzapine was based on PLS and the 
determination coefficient (rc and rp), with the root mean square error of calibration and prediction 
being 0.95, 0.93, 3.2 × 10-3 and 4.0 × 10-3% m/m, respectively. The proposed NIR method is an 
effective alternative for quantification of olanzapine in the pharmaceutical industry.

Keywords: near infrared spectroscopy, olanzapine, partial least squares regression, figure of 
merit, HPLC

Introduction

Atypical antipsychotics are a group of antipsychotic drugs 
used to treat psychiatric conditions. Some atypical 
antipsychotics1 have received regulatory approval 
for schizophrenia, bipolar disorder, autism, and as 
an adjunct in major depressive disorder. The first-line 
psychiatric treatment for schizophrenia and bipolar 
disorder is antipsychotic medication which includes 
olanzapine.2 Olanzapine (Figure 1) is a synthetic derivative 
of thienobenzodiazepine with antipsychotic, antinausea and 
antiemetic activities.3

Several analytical methods have been described for the 
quantification of olanzapine in biological fluids, pharmaceutical 
formulations and tissues such as high performance liquid 
chromatography (HPLC) with ultraviolet4,5 or electrochemical 
detection,6 liquid chromatography/electrospray ionization 
tandem mass spectrometry (LC-ESI-MS/MS)7 and mass 
spectrometry imaging (MSI) using matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS).8 Although these cited analytical 

methods indicate the effectiveness of liquid chromatography 
owing to its reliability, accuracy, reproducibility of results 
and sensitive analytical method for the determination of 
olanzapine in various studies, they are time consuming 
and require experienced personnel to perform the analysis. 
Furthermore, they are also destructive methods involving 
sample preparations. For all of these reasons, the search for 
new analytical techniques is of fundamental importance, 
especially those which lower both analysis time and cost.

On the other hand, near infrared spectroscopy (NIRS) 
has been developed and proven to be a powerful 
tool for the pharmaceutical industry due to some 
characteristics such as being a fast and non-destructive 

Figure 1. Chemical structure of olanzapine.
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method, requiring minimal or no sample preparation 
and its high precision. Also, no reagents are required 
and no waste is produced, in contrast with traditional 
analytical methods (liquid chromatography, for example). 
Hertrampf et al.9 employed NIR spectroscopy coupled 
with multivariate models to analyze tablets containing 
two different active pharmaceutical ingredients (API) 
(bisoprolol, hydrochlorothiazide) in different commercially 
available dosages. Two pharmaceutical excipients (lactose 
monohydrate and microcrystalline cellulose) and one API 
(acetaminophen) were used, and investigated using NIRS 
and partial least squares (PLS) by Sánchez-Paternina et al.10 
For pharmaceutical industry examples using NIRS 
technique, we can cite special interest in the identification of 
raw materials and finished products,11 reaction monitoring 
in blending processes,12 determination of active principles,13 
dissolution testing,14 hardness testing15 and polymorphs.16

The use of appropriate mathematical and statistical 
methods (i.e., chemometrics) is largely responsible for the 
advancement of the NIR technique, including multivariate 
calibration techniques such as partial least squares (PLS),17 
principal component regression (PCR),18 artificial neural 
networks (ANN)19 and least squares-support vector machine 
(LS-SVM).20 The main advantages of using the multivariate 
calibration techniques listed above is that fast, cheap, or 
non-destructive analytical measurements (such as NIRS) 
can be used to estimate sample properties (for example, 
physicochemical parameters of pharmaceutical formulations) 
which would otherwise require time-consuming, expensive 
or destructive testing (such as liquid chromatography). 
Additionally, the establishment of validation procedures 
for multivariate calibration is very important because it 
is the first step for recognizing these methods for official 
analysis, especially in pharmaceutical legislation. Validation 
occurs via determination of several parameters, known 
as the figures-of-merit (FOM).21 According to ANVISA 
(RE 899/2003),22 validating a pharmaceutical analysis 
method is done by following the parameters of: sensibility, 
selectivity, accuracy, precision, linearity, range, limit of 
detection (LOD), quantification (LOQ) and robustness. 
Brazilian pharmacopeia23 and the European Medicines 
Agency (EMEA)24 have also adopted guidelines for 
validating methodology which employs NIR spectroscopy 
using established chemometrics tools, and evaluating 
parameters such as specificity, linearity, range, accuracy, 
precision and robustness.

Herein, we have attempted to quantitatively determine 
the active principle of olanzapine in different pharmaceutical 
excipients using NIRS and multivariate calibration. 
Nevertheless, olanzapine content has never been calibrated 
by NIR spectroscopy, or any other rapid technique. In 

addition, data pre-processing methods were evaluated 
to determine the most suitable method for analyzing 
the data type. Finally, the best performing models were 
validated by calculating the FOM obtained from the 
analyses, which included selectivity, sensitivity, analytical 
sensitivity, precision, accuracy, limit of detection and limit 
of quantification.

Experimental 

Sample preparation and mixture design

The pharmaceutical preparation studied was a powder 
mixture with antipsychotic action containing olanzapine 
as the active principle and seven excipients (lactose, 
microcrystalline cellulose, poloxamer, crospovidone, 
silicon dioxide, magnesium stearate and coating mixture). 
All compounds (active principle and excipients) were 
supplied by the Center for Food and Drug Research 
of the Federal University of Rio Grande do Norte 
(NUPLAM/UFRN), Brazil. In this work, olanzapine from 
NUPLAM/UFRN (Brazil) and EMS sigma pharma (State 
of São Paulo, Brazil) was used to correspond to form II 
(polymorphic).

Laboratory and commercial samples were weighed, 
crushed and individually placed in the same vials in 
variable proportions to span a concentration range (1.0 to 
12.5 mg per 100 mg of powder (average mass 210 mg)) 
of nominal content in the active principle and ± 5% for 
excipients. Laboratory samples were made by individually 
weighing all excipients (including the coating powder 
mixture) and active principle, according to its mass used in 
the master formula. Commercial samples provided for the 
study were weighed, crushed and individually placed into 
the vials. From there, they were also homogenized using a 
Tube Mixer for 5 minutes to ensure the same concentration 
of active principle per milligram of powder. Commercial 
samples (2.5, 5.0 and 10.0 mg of olanzapine also per 100 mg 
of powder (average mass 210 mg)) were obtained from 
EMS sigma pharma (State of São Paulo, Brazil). The 
concentration of the active principle within laboratory 
samples was between 0.0047 to 0.0595% m/m and for 
the commercial samples it was 0.0119 to 0.047% m/m.

The ternary mixtures were selected according to 
a D-Optimal solution25 (Modde software version 4.0, 
MKS Data Analytic Solutions, Umeå, Sweden) totaling 
twenty-seven experiments, covering all corners at the 
center point of the mixture space. D-Optimal design was 
employed to select the concentration levels of olanzapine 
and excipients in the laboratory samples of calibration and 
external validation sets in order to build the multivariate 
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model. At the center point, all constituents in the mixture 
had nominal values. Six additional mixtures were made in 
order to achieve nearly equidistant steps in mass fraction 
for calibration and validation. Figure 2 illustrates the 
mixing ratios of the powder mixtures. One gram of every 
laboratory sample was homogenized in a Tube Mixer from 
BIOMATIC (Rio Grande do Sul, Brazil).

NIR spectroscopy

NIR spectra were collected in diffuse reflection mode 
via FT-NIR spectrometer (MPA, Bruker Optics, Ettlingen, 
Germany) equipped with an integrating sphere. Each 
measured spectrum (in triplicate) was the average of 
32 scans obtained with a resolution of 16 cm-1 and over 
the range of 900-2500 nm. The background spectrum was 
recorded using a gold coated slide. Spectral measurements 
were done in an acclimatized room under controlled 
temperature of 22 oC, and 60% relative air humidity.

HPLC analysis 

After NIR analysis, the samples were subject to 
reference analysis using HPLC. The API olanzapine was 
determined by performing isocratic analysis by using an 
HPLC instrument from HITACHI equipped with pump 
(5160), auto-injector (5260), column oven (5310), iodine 
array detector (5430), all from Hitachi (Tokyo, Japan), 

column Xterra® (Waters), 150 × 4.6 mm × 5 µm at 25 ºC. 
For each analysis, the mobile phase used was in proportion 
64:17:19 v/v of citrate buffer pH 5.9, acetonitrile and 
methanol, respectively.

The HPLC procedure used as reference to determine the 
API (olanzapine) in production tablets was as follows: each 
different concentration (2.5, 5.0 and 10.0 mg) tablet was 
weighed, dissolved in hydrochloric acid 0.1 N, sonicated 
for 10 min, diluted to 25 mL (2.5 mg), 50 mL (5.0 mg) 
and 100 mL (10.0 mg) with the same acid. An aliquot of 
15 µL was injected at HPLC to obtain the chromatogram 
at 260 nm. The API in each sample, in milligrams of 
API per gram of tablets was used as reference datum.

Chemometrics procedure and software

All calculations (models and pretreatments) were 
performed using the MATLAB version 6.5 (The 
Math-Works, Natick, USA), specifically the PLS-toolbox 
(Eigenvector Research, Inc. ,Wenatchee, WA, USA, 
version 6.01). The calculated NIR spectra was log 1/R 
transformed in the first step, followed by the average spectra 
for each sample. Different pretreatments such as Smoothing 
Savitzky-Golay (SGS) (7 window points) followed by 
MSC (multiplicative scatter correction) and first-order 
derivative Savitzky-Golay (7 window points) were applied 
on the spectra in order to minimize undesirable features 
such as spectral offset, noise, baseline and scattering.14,26

Figure 2. Ternary mixture design for NIR calibration measurements according to a D-Optimal design. (a) Olanzapine-crospovidone-silicon dioxide; 
(b) olanzapine-poloxamer-lactose; (c) olanzapine-coating mixture-magnesium stearate; (d) olanzapine-microcrystalline cellulose-lactose; (e) olanzapine-
crospovidone poloxamer; (f) olanzapine-magnesium stearate-silicon dioxide.
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A PLS-regression model was developed and validated 
by leave-one-out full-cross-validation. To avoid overfitting, 
test-set validated calibrations were used (75 and 25% of the 
spectra of laboratory and commercial samples, respectively, 
were applied in the calibration set and, 25 and 75% of the 
spectra of laboratory and commercial samples, respectively, 
were applied in the validation set) through the classic 
Kennard-Stone (KS) selection algorithm.27 The following 
quality parameters were used to evaluate the calibration 
models, respectively: RMSEC (root mean square error of 
calibration), RMSEP (root mean square error of prediction), 
correlation coefficients of each model for calibration 
data set (rc) and prediction data set (rp). An elliptical joint 
confidence region (EJCR) was calculated to evaluate the 
slope, intercept the reference regression, and to predict 
values at a 95% confidence interval.

Finally, validating an analytical method entails 
determining whether it fulfills its intended purpose. To 
do this, some figures of merit were determined such as 
sensitivity (fraction of analytical signal that is due to the 
increase of the concentration of a particular analyte at 
unitary concentration), selectivity (indicates the portion 
of the instrumental signal that is used for the multivariate 
calibration model), analytical sensitivity (ratio between the 
sensitivity and the instrumental noise), precision (degree 
of scatter between a series of measurements for the same 
sample under prescribed conditions), accuracy (closeness of 
agreement between the reference value and the value found 
by the calibration model, generally expressed as the root 
mean square error of the prediction samples (RMSEP)), 
limit of detection (minimum detectable value of net signal 
(or concentration) for which the probabilities of false 
negatives (β) and false positives (α) are 0.05) and limit of 
quantification (signal or analyte concentration value that 
will produce estimates having a specified relative standard 
deviation). The quality metrics28 used in this study for 
evaluating the figures of merit results can be calculated 
following the equations:

Sensitivity =  (1)

Selectivity =  (2)

Analytical sensitivity =  (3)

Precision =  (4)

Accuracy = RMSEP =  (5)

Limit of detection = LOD =  (6)

Limit of quantification = LOQ =  (7) 

where the vector of sensitivities Sk
nas must be the same 

for all calibration samples,  is the vector for the net 
analyte signal for the k analyte and yi is the reference value 
of the sample i. xk,un is the Euclidean norm of the original 
vector of the instrument responses. δx is an estimate for 
the instrumental noise, calculated as the standard deviation 
of 15 blank samples. n is the number of samples and m the 
number of replicates.

Results and Discussion

The objective of this work was to develop a methodology 
to determine the active principle of olanzapine in a mixture 
of seven pharmaceutical excipients (lactose, microcrystalline 
cellulose, poloxamer, crospovidone, silicon dioxide, 
magnesium stearate and coating mixture) in laboratory 
samples using a simple, rapid and non-destructive method. 
The raw NIR spectra (27 laboratory samples and 18 
commercial samples) show the main effect of variations on 
NIR-spectra (baseline offset and overlapping peak). The 
spectrum for the pharmaceutical preparation was highly 
similar to that for all excipients, being consistent with the 
low concentrations of the active principle. The best models 
obtained during the pretreatment stage utilized Savitzky-
Golay smoothing (with a window of 7 points), MSC and 
the first derivative of the Savitzky-Golay polynomial (with 
a window of 7 points), as can be seen in Figure 3.

A PLS-regression model was developed for active 
principle and validated by leave-one-out full-cross-
validation and the optimal number of PLS factors chosen 
like the minimum in the graph of residual variance versus 
the number of factors. PLS is a mathematical method that 
is able to describe the covariance between multidimensional 
NIR spectral data and response variables by means of 
a small number of latent variables or PLS factors. Six 
latent variables were found to sufficiently describe the 
variance in the spectra (99%). The performed calibration 
models achieved low RMSEC (3.2 × 10-3% m/m), RMSEP 
(4.0 × 10-3% m/m) and high regression coefficients for 
calibration (rc = 0.95) and prediction (rp = 0.93). Figure 4 
shows the relationship between the predicted and reference 
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values of the laboratory samples in the calibration and 
validation sets. The diagonal black line represents ideal 
results, where the closer the points plot to the diagonal, the 
better the fit to the model. All the calculated concentrations 
including samples of both calibration and test sets were 
close to the real values.

In order to gain further insight into the accuracy of 
the methods, linear regression analysis of nominal versus 
found concentration values was applied. The estimated 
intercept and slope were compared with their ideal values 
of 0 and 1 using the EJCR test. EJCR calculations are a 
convenient means to ascertain if bias exists in determining 
both parameters when using the PLS model. As can be seen 
in Figure 5, the point (a = 0, b = 1) was inside the EJCR, 
therefore it can be concluded that constant and proportional 
bias are absent.

Based on the comparison analysis above, PLS model 
with smoothing, MSC and first derivative spectral 
pretreatments were applied to predict the olanzapine of 12 
unknown samples (laboratory samples, n = 1-6, commercial 
samples, n = 7-12) after similar spectral pretreatment to the 
calibration ones, as is shown in Table 1. To compare the 
methods between conventional (HPLC) measurement and 
PLS algorithm, the paired t-test method was applied. The 
paired t-test revealed no significant statistical difference 
between the two methods (NIR and HPLC) at a 95% 
confidence level (p = 0.05 and t = 1.06). The repeatability 
of the chromatographic method was followed as described 
by ANVISA22 and assessed by the injection of the standard 
preparation at the sample concentration of all samples 
(100 ppm) in six replicates, according to the HPLC analysis. 
The HPLC method presented a precision with RSD 0.042%.

Figure 3. NIR derivative spectra of the active principle of olanzapine (gray 
line) and original 27 laboratory samples and 18 commercial samples after 
pretreatment [(Smoothing, MSC and a Savitzky-Golay first derivative, 
black line)].

Figure 5. Elliptical joint confidence region for the regression slope and 
intercept of predicted versus reference concentration of olanzapine using 
an external validation set by PLS model.

Figure 4. Predicted versus reference concentration from calibration and 
validation samples for olanzapine using the PLS model. () calibration 
set; () validation set.

Table 1. Comparison results with reference method for commercial 
samples by NIR and HPLC

Sample
Concentration / % (m/m)

Predicted (NIR) Reference (HPLC)

1

laboratory

0.034 0.033

2 0.044 0.047

3 0.036 0.045

4 0.054 0.060

5 0.042 0.043

6 0.013 0.012

7

commercial

0.028 0.023

8 0.021 0.023

9 0.023 0.023

10 0.025 0.023

11 0.023 0.024

12 0.022 0.024

NIR: near infrared spectroscopy; HPLC: high performance liquid 
chromatography.

Figure 3. NIR derivative spectra of the active principle of olanzapine (red 
line) and original 27 laboratory samples and 18 commercial samples after 
pretreatment [(Smoothing, MSC and a Savitzky-Golay first derivative, 
black line)].

Figure 4. Predicted versus reference concentration from calibration and 
validation samples for olanzapine using the PLS model. () calibration 
set; () validation set.
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New analytical methods must be validated prior to 
use by the pharmaceutical industry. The proposed NIR 
method was validated in accordance with ICH guidelines 
by assessing its selectivity, sensitivity, analytical sensitivity, 
precision, accuracy, limit of detection and limit of 
quantification. Table 2 presents the FOM assessed for the 
optimized model. Accuracy values represented by RMSEC 
and RMSEP indicated the estimated multivariate model 
values exhibited acceptable agreement with the reference 
method. Precision at a level of repeatability was assessed 
by analyzing five samples/ten replicates per sample, with 
measurements recorded on the same day, through an 
estimate of the relative standard deviation (RSD). The 
method was considered precise, with a repeatability RSD 
value of 4.02%. Trueness was estimated through absolute 
error parameters, such as a RMSEP of 4.0 × 10-3% m/m. 
Trueness and precision results corroborated that the method 
can be considered accurate. Considering accuracy and 
linearity studies, the analytical working range was defined 
from 1.0 to 12.5% for olanzapine. Acceptable results were 
observed for sensitivity and sensibility to the evaluated 
parameters, considering the analytical range of the model. 
The results estimated for LOD and LOQ values might be 
optimistic.

Conclusions

A NIR method was developed that allows for 
pharmaceutically determining olanzapine accurately and 

precisely in commercial drug products with minimal 
sample treatment. According to the results, PLS is 
presented as a good regression method to be used together 
with pretreatment steps that must be performed initially 
on the sample spectra, ensuring the construction of good 
calibration models and consistent prediction results. The 
NIR method was compared with the conventional (HPLC) 
method for tablet samples; no difference was found at 95% 
confidence interval. The values for accuracy, precision, 
and other figures of merit exhibited promising results, 
indicating that the model developed by NIR spectroscopy 
for olanzapine can be used as an alternative methodology 
for pharmaceutical purposes.
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Abstract: Background: Multivariate transfer techniques have become a widely accepted concept over 

the past few years, since they avoid full recalibration procedures when instruments are changed to ana-

lyze a specific sample.  

Objective: This paper reports a multivariate control chart transfer approach between two near infrared 

(NIR) spectrometers for simultaneous determination of rifampicin and isoniazid in pharmaceutical 

formulation using direct standardization (DS).  

Method: The control charts are based on the calculation of net analyte signal (NAS) models and the 

transfer samples are selected by the Kennard-Stone (KS) algorithm. Three control charts (NAS, inter-

ference and residual) transferred on both the master and slave instruments were measured.  

Results: As a result, a classification model for rifampicin and isoniazid developed on a primary instru-

ment has been successfully transferred to a secondary instrument. The spectral differences after the 

standardization procedure were considerably reduced and errors values found in the charts for both ana-

lytes were comparable with the errors obtained for the original chart models.  

Conclusion: The proposed approach appears to be a valid alternative to the commonly used transfer of 

multivariate calibration models in simultaneous determination of isoniazid and rifampicin in pharma-

ceutical formulation.

Keywords: Multivariate control chart, NAS, isoniazid, rifampicin, direct standardization, NIR. 

1. INTRODUCTION 

Multivariate calibration transfer techniques (also known 
as instrumental standardization) have become a widely ac-
cepted concept over the past few years mainly due to avoid-
ing the use of time-consuming complete recalibration proce-
dures [1-5]. Usually, the instrument standardization proce-
dure for multivariate calibration transfer involves two steps: 
(i) a set of standardization samples are measured on both 
instruments to evaluate their different responses; (ii) stan-
dardization parameters are computed with standardization 
samples and used for spectra transfer [6, 7]. 

Direct standardization (DS) [8], piecewise direct stan-
dardization (PDS) [9], orthogonal signal correction (OSC) 
[3], reverse standardization (RS) [10], piecewise reverse 
standardization (PRS) [11], slope and bias correction (SBC) 
[1], orthogonal projections to latent structures (O-PLS) [12]  
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and model updating (MU) [4] are examples that have been 
successfully applied to various calibration transfer problems. 
These methods relatively correct differences between data 
collected by two instruments where the entire spectra from 
the new (secondary) instrument are transformed by relating 
its spectral variables (e.g., wavelengths) to resemble the 
spectral data from the original (primary) instrument used to 
build a prior calibration model [13].  

On the other hand, there are many situations in which the 
simultaneous monitoring or control of two or more related 
quality–process characteristics is necessary. Multivariate 
control charts based on principal component analysis [14-
16], partial least squares [17], multivariate exponential 
weighted moving average [18], multivariate cumulative sum 
[19] and Bayesian probability [20] are some examples for 
building an empirical model of a set of measurements 
achieved under normal operating conditions (NOC).  

An interesting approach for quality multivariate control 
chart is based on net analyte signal (NAS) [21-24]. This 
method is carried out by the decomposition of a sample spec-
trum into a vector that is unique for the analyte; a vector re-
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lated to the other compounds in the sample (interfering con-
stituents); and a remaining residual vector [25]. Thereafter, 
the statistical limits for the NAS control charts are derived 
from the NAS value for each of the NOC spectra calculated 
[26]. 

This paper investigates a multivariate control chart trans-
fer approach between two near infrared (NIR) spectrometers 
(primary and secondary) for simultaneous determination of 
rifampicin and isoniazid in pharmaceutical formulation, 
which are important drugs used in tuberculosis treatment 
[27,28]. Three control charts (NAS, interference and resid-
ual) transfer using NAS and DS between the primary and 
secondary instruments were developed. These control charts 
were built with the spectral data before and after calibration 
transfer, in which the classification rates were evaluated be-
fore and after DS according to the upper and low limits on 
these charts. 

2. MATERIALS AND METHOD 

2.1. Samples 

The pharmaceutical preparation studied contained isoni-

azid (99.29%, Amsal Quality Control Laboratory, India) and 

rifampicin (98.87%, Sanofi Aventis, Italy) as the active prin-

ciples and four excipients (magnesium stearate, sodium 

starch glycolate, talc and amide). All compounds (active 

principles and excipients) were supplied by the Center for 

Food and Drug Research of the Federal University of Rio 

Grande do Norte (NUPLAM/UFRN) – Brazil. The capsules 

produced at UFRN were available in one absolute active 

pharmaceutical ingredient (API) content per dose. The cap-
sules were uncoated, thus permitting diffuse reflectance. 

Laboratory samples were prepared by a D-optimal ex-

perimental design using MODDE® 4.0 (MKS Data Analyt-

ics Solutions, Umeå, Sweden). D-optimal design is per-

formed when the classical symmetrical design cannot be 

used because the shape of the experimental region is irregu-

lar or the number of experiments selected by a classical de-

sign is too large. A total of 120 pharmaceutical formulation 

samples were generated to efficiently represent the design 

space for the large number of possible combinations of these 

substances and to build the NAS charts. These samples were 

weighed on an analytical scale with a total weight accuracy 

of 0.012 g. Then, the samples were mixed for 3 min and vor-
texed for 1 min before NIR analysis. 

Next, the samples were used to design news samples 
varying API concentrations (isoniazid and rifampicin) and to 
provide a variable matrix from which NAS charts could be 
derived providing an independent set of samples that could 
be used to check the accuracy of the control charts for each 
instrument. Samples containing only the excipients (blank 
samples) were also prepared. The samples (blank, in control 
and out-of-control) used for NAS, interference and residual 
charts were distributed as follows:  

i) 20 blank samples: 10 samples for isoniazid and 10 sam-
ples for rifampicin; 

ii) 10 samples in control (isoniazid, rifampicin, magnesium 
stearate, microcrystalline cellulose, talc and starch); 

iii) 20 samples in control (2.5% of the nominal content of 
each active substance); 

iv) 20 samples in control (5.0% of the nominal content of 
each active substance); 

v) 20 samples out-of-control (8.0% of the nominal content 
of each active substance); 

vi) 20 samples out-of-control (12.0% of the nominal content 
of each active substance); 

vii) 10 samples out-of-control (16.0% of the nominal content 
of each active substance). 

2.2. Instruments 

The primary (master) instrument used was an Antaris 
MX Fourier Transform NIR spectrophotometer (Thermo 
Fisher Scientific Inc., USA) equipped with a transflectance 
optical fiber probe being positioned onto the sample surface 
(less than 1 cm and at 90° from the surface). The transflec-
tance probe was washed with ethanol (70% v/v) and dried 
using tissue paper after each sample. The spectrum of a 
polytetrafluoroethylene sample was used as the background. 
The NIR spectra were obtained over a range of 1000–2400 
nm, and were recorded with a spectral resolution of 1 nm, 
with 32 scans co-added. The measurement time was 26 s (32 
scans) per spectrum. A Fourier Transform NIR MPA spec-
trometer was used as the secondary (slave) instrument 
(Bruker Optics, Germany) equipped with an integrating 
sphere via diffuse reflection mode. Each measured spectrum 
(in triplicate) was the average of 32 scans obtained with a 
resolution of 2 nm and over the range of 1000–2400 nm. The 
background spectrum was recorded using a gold coated slide. 
Spectral measurements for both instruments were done in an 
acclimatized room under controlled temperature of 22°C and 
60% relative air humidity. 

2.3. Data Analysis 

The data import, pre-processing, and construction of mul-
tivariate control charts were implemented in MATLAB® 
version 7.12.0 (MathWorks Inc., USA) using an in-house 
developed algorithm. Different preprocessing methods were 
tested, including baseline correction; multiplicative scatter 
correction (MSC); variance scaling; derivative; and 
Savitzky-Golay smoothing using first- and second-order 
polynomial functions varying the number of window points 
(7, 11 and 15). However, the best pre-processing were base-
line correction and MSC for isoniazid charts; and baseline 
correction for rifampicin charts. These pre-processing were 
the same for both equipment. The technique chosen for se-
lection of transfer samples was the classic Kennard Stone 
(KS) algorithm [29]. 

3. THEORY 

Fundamentally, in order to build a multivariate control 
chart based on NAS, an out-of-control indicator is required 
for diagnostic and corrective measures. In this sense, two 
steps are required: 1) (diagnostic) discovery which meas-
urement variables contribute to the out-of-control signal and 
2) (corrective) determining what occurs in the process that 
disturbs the behavior of these variables.  
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The first step to perform before any standardization 
method is to select the standardization samples to transfer, 
which is commonly obtained by using sample selection tech-
niques, such as KS algorithm [29] or leverage [9]. The num-
ber of transfer samples is evaluated by an arbitrary cost func-
tion, which for calibration models is usually the root-mean-
squared error of prediction [13]. In our case, for classifica-
tion purpose, this cost function was calculated as the classifi-
cation rate of the NAS control charts. 

The DS is a multivariate standardization method em-
ployed to correct relatively large differences between data 
collected by two instruments [9]. In this method, the entire 
spectra from the new (secondary) instrument are transformed 
by relating its spectral variables (e.g., wavelengths) to re-
semble the spectral data from the original (primary) instru-
ment used to build a prior calibration model [13]. The linear 
relationship between the primary and secondary response is 
described by the transformation matrix F according to Eq. 
(01) [4]: 

S1 = S2F            (01) 

where S1 and S1 are the data matrices of the standardization 

samples for the primary and secondary instruments, respec-

tively.  

Thus, the transformation matrix is estimated in a least-

squares sense according to Eq. (02) [30]: 

F = S2 S1

+

           (02) 

where 
+

S2  is the pseudo-inverse of S2. S2 must contain inde-

pendent rows (samples) or columns (variables) for the 

pseudo-inverse calculation to be feasible (Eq. (03)). 

+

S2  = (STS) 1ST            (03) 

After the calculation of F, the projection of the response 
vector for a new sample x from the secondary instrument on 
the original space from the primary instrument is estimated 
according to Eq. (04) [4]: 

ˆX
T
 = X

T
F            (04) 

where x̂  is the standardized response vector for x. 

In order to solve possible problems related to different 
background information in both instruments, the standardiza-
tion process was performed using the background correction 
method [30] where the data matrices of standardization sam-
ples from the primary and secondary instruments relate to 
each other by the transformation matrix calculated with the 
background correction Fb and an additive background cor-
rection vector bs according to Eq. (05): 

S1 = S2Fb + 1bs
T            (05) 

where bs is obtained using Eq. (06): 

bs  = s1m - Fbs2m

T

          (06) 

in which S1m is the mean vector of matrix S1 and S2m is the 
mean vector of matrix S2. 

Multivariate control charts based on NAS provide multi-
variate product quality monitoring and they are carried out in 

two stages: (i) model building and (ii) calculation of statisti-
cal limits [26]. The first stage consists on the decomposition 
of a sample spectrum r into three vectors: a vector rNAS that is 
unique for the analyte; a vector rINT that is related to the other 
compounds in the sample (interfering constituents); and a 
residual vector rres [25]: 

r = rNAS + rINT + rres          (07) 

In the second stage, the statistical limits of the NAS con-
trol charts are derived from the NAS value for each of the 
NOC spectra calculated as follows: 

nasNOC = RNOCbk
T

          (08) 

where nasNOC is a vector with the NAS value of the indi-
vidual NOC spectra; RNOC is the set of NOC spectra used to 
set the control limits for the NAS chart; and bk is the or-
thogonal part of the model spectra used to define the NAS 
direction on the interference space [26]. The NAS values 
are assumed to follow a normal distribution, which can be 
verified by statistical normality tests such as QQ plot [31]. 
Its mean and standard deviation are computed for statistical 
limits (95% confidence limits called the upper and lower 
warning lines, and 99.7% confidence limits called the up-
per and lower action lines) that are plotted in the NAS con-
trol chart [26]. The classification rate was calculated based 
on the 2-sigma (95%) confidence interval; so that any sam-
ple outside this limit would be considered out of control. 
The 3-sigma (99.7%) confidence interval was not used for 
classification evaluation but it represents the limit with the 
largest probability for a sample be identified as out of con-
trol. 

The interference chart is based on projecting the RNOC 
matrix on the interference space. The projected “under con-
trol” spectra occupy a restricted region on the interference 
space, wherein the pharmaceutical formulation is constructed 
with placebo and blank samples. The validation of these con-
trol charts is made by using “in-control” and “out-of-control” 
samples, based on the concentration of the active pharmaceu-
tical ingredient [25, 26]. The residual charts are obtained 
after calculation of NAS and interference vector, in which its 
control limits are estimated based on Q-statistics by fitting a 
chi-squared distribution to the reference distribution obtained 
from NOC data [25, 26]. The Q-statistics is the first type of 
statistical calculation recommend to test significance of an 
individual observation vector [32]. It is calculated for a sam-
ple vector following a chi-squared distribution [26]: 

QNOC ˜ 
gxh

2
            (09) 

where QNOC contains the Q-statistics of the NOC spectra; g 

represents the weight to account for the magnitude; and Xh

2
 

is the chi-squared distribution to the reference distribution 

obtained from NOC data, where the parameter h denotes the 

degrees of freedom. Using this statistics, if we have a situa-

tion where the residual vector of a new sample is not only 

random noise then the observation will have a large Q-

statistics and flag in the residual chart [26]. In addition, the 

chi-squared distribution is very adequate for large samples 

sets [33], therefore, being very suitable for industrial or rou-

tine applications. On the other hand, statistics such as F dis-
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tribution was not used due to the lack of sensitivity to detect 

normality of distribution in the residuals [33]. 

The control chart transfer procedure is summarized on 
the flowchart in Fig. (1). In this, the spectral data is separated 
into three sets: Xcal(M) corresponding to the calibration 
samples of the primary (master) instrument; Xcal(S) corre-
sponding to the calibration samples of the secondary (slave) 
instrument; and Xpred(S) corresponding to the prediction 
samples of the secondary instrument to be analyzed using the 
control chart of the primary instrument. The spectral resolu-
tion and the number of calibration samples used for transfer-
ring data from both instruments must be equal or otherwise 
all algebraic operations will not be possible since the matri-
ces sizes would be different. Therefore, an algorithm for 
correct spectral resolution was inserted on the transfer ap-
proach. This algorithm resizes the spectra of higher resolu-
tion to match with the spectra of lower resolution keeping its 
shape constant; in other words, it “compresses” the largest 
spectra. The transfer samples are selected by the calibration 
indexes found employing KS algorithm on the Xcal(M) data. 

 

Fig. (1). Flowchart for control chart transfer procedure using DS. 

 

The DS transferring is performed by combining the trans-
fer samples from both instruments. Then, the prediction set 
from the secondary instrument (Xpred(S)) is standardized by 
using the transformation matrix with additive background 
correction (Eq. (05)). At the end, the standardized Xpred(S) 
is analyzed by the NAS-based primary control charts and the 
classification rate is calculated. This parameter is used as the 
cost function to define the ideal number of transfer samples. 
After the model is optimized with the ideal number of sam-
ples to transfer, all external prediction samples from the sec-
ondary instrument are standardized and predicted using the 
primary control chart. 

4. RESULTS AND DISCUSSIONS 

Fig. (2) shows the raw NIR spectra of a pharmaceutical 
formulation sample acquired on the two instruments em-
ployed in this study. They are the averages of triplicate 
measurements for each sample recorded in the region from 
1000 to 2400 nm. 

As mentioned before, the primary and secondary instru-
ments were from different manufacturers and different 
measurement procedures were employed with each. As can 
be seen in Fig. (2), there are resulting spectral differences 
between master and slave measurements. Some preprocess-
ing methods needed to be applied to reduce instrumental 
noise and light scattering that can affect the baseline. The 
performance of each preprocessing method was evaluated 
according to their correct classification rate (predicted sam-
ple index equal to the correct class index) and incorrect clas-
sification rate (predicted sample index different from the 
correct class index) using a calibration and validation set. 
The best prediction rates were obtained using baseline cor-
rection combined with MSC for isoniazid control chart; and 
baseline correction for rifampicin control chart (see Fig. 3). 
The spectral differences between both instruments motivate 
the use of control chart transfer techniques. 

 

Fig. (2). Spectra of a representative pharmaceutical formulation 

sample acquired on two NIR instruments: dashed line represents the 

NIR spectrophotometer equipped with transflectance optical fiber 

probe (primary); and the continuous line represents the NIR spec-
trophotometer equipped with an integrating sphere (secondary). 

 

For isoniazid, the control charts (NAS, interference and 
residual) constructed for master instrument achieved the fol-
lowing correct classification rates: 92% (NAS chart); 100% 
(interference chart); and 100% (residual chart). When the 
isoniazid model was directly applied to the slave instrument, 
the following correct classification rates were achieved: 71% 
(NAS chart); 100% (interference chart); and 100% (residual 
chart). The prediction accuracy was particularly poor for the 
slave instrument because of the major spectral differences 
between this instrument and the master. Fig. (4) and Fig. (5) 
show the control charts developed for isoniazid using the 
master and slave instrument, respectively. These results jus-
tify the application of multivariate control chart transfer to 
the acquired data, as without a transfer technique, the correct 
classification rate may be completely different when the NIR 
spectra from an instrument is validated into another. 
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Fig. (3). NIR spectra after application of: a) baseline to rifampicin; 

b) baseline and MSC to isoniazid. Dashed line – primary instru-
ment; and continuous line – secondary instrument.  

 

 

Fig. (4). Control charts for isoniazid using master instrument: ( ) 

calibration, ( ) validation and ( ) prediction. NAS: net analyte 

signal; INT: interference; RES: residual. 

 

Fig. (5). Control charts for isoniazid using slave instrument: ( ) 

calibration, ( ) validation and ( ) prediction. NAS: net analyte 

signal; INT: interference; RES: residual. 

The prediction performance of the multivariate control 
charts (NAS, interference and residual) for isoniazid in the 
master and slave instruments after DS multivariate control 
chart transfer procedure were calculated by using 20 transfer 
samples selected by KS algorithm. The standardization im-
proved the correct classification for NAS chart from 71% 
(without DS) to 92% (after DS); and maintained the same 
correct classification rates for interference (100%) and resid-
ual (100%) charts. These correct classification rates are satis-
factory, mainly for NAS chart, considering the simplicity of 
the multivariate control chart transfer used, and showing 
their importance to avoid a full recalibration step.  

For rifampicin, the control charts (NAS, interference and 
residual) built for the master instrument achieved the follow-
ing correct classification rates: 86% (NAS chart); 99% (in-
terference chart); and 73% (residual chart). When the isoni-
azid model was directly applied to the slave instrument, the 
following correct classification rates were achieved: 71% 
(NAS chart); 99% (interference chart); and 60% (residual 
chart). The prediction accuracy was particularly poor for the 
slave instrument because of the major spectral differences 
between this instrument and the master. However, the stan-
dardization improved the correct classifications for NAS 
chart (86%), interference chart (99%) and residual chart 
(73%) using 11 transfer samples selected by KS algorithm. 
Fig. (6) and Fig. (7) show the control charts developed for 
rifampicin using the master and slave instruments, respec-
tively. 

These classification values demonstrate that after multi-
variate transfer the response obtained with the secondary 
instrument gave the same results observed with the primary 
instrument despite the differences of resolution, equipment 
and probe. Therefore, the standardization methodology 
shown herein was a successful case for rinfampicin and 
isoniazid determination using NAS control charts con-
structed with different NIR spectrometers, which can avoid a 
full recalibration when analyzing these samples with differ-
ent NIR equipment and shows its potential to further applica-
tions. 
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Fig. (6). Control charts for rifampicin using master instrument: ( ) 

calibration, ( ) validation and ( ) prediction. NAS: net analyte 

signal; INT: interference; RES: residual. 

 

 

Fig. (7). Control charts for rifampicin using slave instrument: ( ) 

calibration, ( ) validation and ( ) prediction. NAS: net analyte 

signal; INT: interference; RES: residual. 

 

CONCLUSION 

This paper presents a multivariate control chart transfer 
approach between two NIR spectrometers for simultaneous 
determination of rifampicin and isoniazid in pharmaceutical 
formulation using DS. The study reported herein supports the 
usefulness and effectiveness of this approach for simultane-
ous determination of isoniazid and rifampicin using NIR 
spectroscopy. The results (in terms of correct classification) 
demonstrated that the direct application of the master in-
strument to the control charts (NAS, interference and resid-
ual) acquired on a slave instrument may lead to poor predic-
tions, making the use of multivariate control chart transfer 
necessary.  

LIST OF ABBREVIATIONS 

API = Active pharmaceutical ingredient 

DS = Direct standardization 

KS = Kennard-Stone 

MSC = Multiplicative scatter correction 

MU = Model updating 

NAS = Net analyte signal 

NIR = Near infrared 

NOC = Normal operating conditions 

O-PLS = Orthogonal projections to latent structures 

OSC = Orthogonal signal correction 

PDS = Piecewise direct standardization 

PRS = Piecewise reverse standardization 

RS = Reverse standardization 
SBC = Slope and bias correction 
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