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Abstract

The common lore in statistical physics suggests that phases and transitions of mat-

ter are generally classified by what is called the Landau-Ginzburg-Wilson paradigm.

In two dimensions, however, quantum models can exhibit “deconfined” continuous

transitions between ordered phases, which are forbidden by the Landau classifica-

tion. On this thesis, we introduce a one-dimensional quantum spin model with three

ordered phases: A chiral spin state, where the system orders into three-spin “fluxes”,

an antiferromagnetic state, and a novel phase which we denote as the Klein param-

agnet. We find that all transitions from the chiral phase are continuous and beyond

the Landau paradigm.

Keywords: Chiral phase, Deconfined quantum criticality, Landau paradigm,

Bosonization, Pseudospins
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Resumo

O conhecimento comum em f́ısica estat́ıstica sugere que fases da matéria e suas

transições são geralmente classificadas pelo chamado paradigma de Landau-Ginzburg-

Wilson. Em duas dimensões, entretanto, modelos quânticos podem apresentar

transições cont́ınuas “deconfinadas” entre fases ordenadas, proibidas pela classi-

ficação de Landau. Nesta dissertação, introduzimos um modelo de spin em uma

dimensão com três fases ordenadas: um estado de spin quiral, onde o sistema se

ordena em “fluxos” de três spins, um estado antiferromagnético, e uma nova fase

nunca antes estudada que denominamos de paramagneto de Klein. Encontramos que

todas as transições que envolvem a fase quiral são cont́ınuas e fora do paradigma de

Landau.

Palavras-chave: Fase quiral, Criticalidade quântica deconfinada, paradigma

de Landau, Bosonização, Pseudospins
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Chapter 1

Introduction

“How many states of matter are there?”

Starting from first principles, one might think that the tools of physics are

too simple to deal with such complex questions. In a simple estimate, macroscopic

materials have N ⇠ 1023 interacting particles, while only gaseous substances are

generally treated in an undergraduate statistical mechanics course.

It is somewhat surprising that only a few physical properties must be taken

into account to describe matter around us. A good starting point is given by ther-

modynamics, whose principles dictate the macroscopic limit of physical systems at

equilibrium. The missing ingredient, as shown by Lev Landau in 1937 [7, 8], is the

concept of an order parameter: If one can write down a variable(s) � whose value

can indicate the presence of some phase, Landau noted that it generally breaks some

symmetries of the system. Then, by imposing that the free energy of the system

f is a fully well-behaved (analytic) function of this variable, a simple description is

obtained by writing down the most general expansion of f = f(�), while respecting

the symmetries. The minima of this free energy corresponds to the possible values

of the order parameter, and, therefore, the possible phases of matter.

A particularly nice example comes from high-school physics: Consider a fluid

in a recipient of volume V in which we can measure its density of particles ⇢. The

common lore is that there are at least three phases of matter: A compressible gas,

where the density is uniformly distributed throughout space, a high-density solid

state, where particles are pinned in some lattice configuration due to interactions,

and a nearly incompressible liquid state, an intermediate state.

11
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The translation symmetry T : x ! x + a plays an important role: While the

average position of the molecules of a gas or a liquid can be translated by any vector

without changing the phase, this is not the case for a solid, where the positions

are fixed periodically, see Fig 1.1(a). Indeed, the translation symmetry is said to

be spontaneously broken in a solid, while it is preserved in the liquid/gas. By the

Landau prescription, it is necessary to go through a phase transition to get from

a phase to another. The corresponding order parameter is given by the Fourier

transform of the density:

⇢̃(Q) =

Z
d3
xeiQ·x⇢(x) , (1.1)

whereQ is a reciprocal lattice vector. If ⇢̃(Q 6= 0)! 0, translation symemtry is then

restored. A sharp conclusion from this analysis is the equivalence of a liquid and a

gas under the translation symmetry, since both have uniform density. A commonly

found phase diagram of simple fluids is shown in see Fig 1.1(b), where each phase

and corresponding transitions are indicated given a pressure and temperature. Note

that the liquid/gas transition terminates at a point, known to be the critical point.

That is, for high enough temperature and pressure, there is no distinction between

a gas and a liquid! Any path starting from the solid phase and ending on any of the

other two phases needs to cross a phase transition.

Figure 1.1: (a): Action of the translation symmetry in the solid (gas/liquid) in the top(bottom)
figure, pictorially. Note that, for a gas/liquid, the red arrows can move continuously without
changing the average properties of the phase. In a solid, allowed translations are locked down to
lattice sites. (b): Phenomenological phase diagram of a simple fluid, where the phase transition
lines are in black. The red point in the middle is known as the triple point, connecting all three
phases. For high enough pressure and temperatures, there are smooth paths connecting the liquid
and the gas, as highlighted by the dashed arrow.
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However, to properly describe the nature of transitions, the order parameter can

behave as a physical degree of freedom and fluctuate in space, � = �(x). The free

energy is then promoted to a functional F [�(x)], known as the Landau-Ginzburg

functional [1,3]. Fluctuations are introduced if a partition function is constructed by

summing over field configurations, in a framework called statistical field theory (also

known as euclidean quantum field theory) [9, 10]. In developments led by Kenneth

Wilson [11–14], it was shown that physical observables of statistical field theories

depend on which energy scale they are probed: This is the idea of the renormalization

group. For example, even if the starting point are atoms interacting in a complicated

way microscopically, the physics at long distances (corresponding to low energies)

is just described by the order parameter. This procedure can put on qualitative

grounds and is used to extract what terms of the Landau expansion are important

at long distances. With all principles combined, this framework to describe phases

of matter was coined as the Landau-Ginzburg-Wilson (LGW) paradigm [15].

An important prediction from this scheme is the existence of two fundamentally

di↵erent types of phase transition. A first-order (abrupt) phase transition occurs

when discontinuous jumps appear in thermodynamic quantities, such as in the solid-

liquid transition, for example. In this case, not much of interesting happens: it can

happen in the boundary of two di↵erent symmetry-broken phases, with distinct

order parameters or in the boundary of two symmetry-equivalent phases [16], and

generally symmetries are broken at the transition. It can be understood as a region

where both phases coexist, and microscopic details become important.

In a second-order (continuous) phase transition, the order parameter vanishes

continuously at the transition, at the boundary between a symmetry-broken phase

and a disordered symmetry-preserving phase. Such transitions are the most inter-

esting: Thermodynamic quantities, such as the free energy and specific heat, have

power-law divergences in thermodynamic quantities, defining a universality class :

Two completely di↵erent microscopic systems may have the same second-order tran-

sition, that is, the divergences are characterized by the same exponents. Moreover,

such fixed points generally hold emergent symmetries, since a lot of irrelevant details

are “washed out” by the renormalization group. The most significant examples are

field theories with conformal symmetry, known as conformal field theories [17].

We are, however, interested in the phases of many-body quantum mechanical

systems, which are known to hold phase transitions even at T = 0! That is, given

a hamiltonian H, the corresponding ground state can have di↵erent symmetry-
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breaking phases. For quantum spin systems, our main focus, one has a spin degree

of freedom on each site �↵
i
, where di↵erent components are non-commuting on each

site. The following simple-looking hamiltonian already shows the complexity of the

quantum ground-state problem:

HTFIM = �
X

hi,ji

�z

i
�z

j
� g

X

i

�x

i
, (1.2)

named the transverse field Ising model (TFIM), since there is a magnetic field in the

x-direction, whereas the Ising-like interaction is in the z-direction. Intuitively, this

is loosely known as “quantum fluctuations”: Since one can write local terms which

do not commute with each other, the corresponding wavefunctions can “fluctuate”

between basis states. In fact, in the above model, this generates a quantum phase

transition [18]: by taking g = 0, the ground state is a ferromagnet in the z-direction,

it breaks an internal Z2 symmetry and is twofold degenerate. For g !1, the spins

are polarized in the x-direction, without breaking any symmetry. These two phases

are, in fact, separated by a continuous phase transition, as predicted by the LGW

paradigm, see Fig 1.2(a) and Sec 3.1.

There is a similarity to the finite-temperature classical case, as some kind

of fluctuations generates a phase transition following LGW. In fact, one can un-

derstand quantum fluctuations acting as thermal fluctuations on a extra dimen-

sion: This is known as the quantum-classical correspondence. That is, the ground

state of a d�dimensional quantum system can be mapped to a thermal phase of

a (d + 1)�dimensional classical statistical mechanics problem. In the case of the

transverse field Ising model, the classical description is the two-dimensional classi-

cal Ising model, solved by Onsager [19]. The quantum and ferromagnetic phases

are mapped into each other, while the trivial paramagnet (polarized) phase in the

quantum side corresponds to a classical disordered phase.

A solemn conclusion apparently arises from this equivalence: There wouldn’t

be any true macroscopic manisfestation of quantum mechanics. To put it in another

way, every quantum phase would be described by a thermal classical ensemble.

This seems implausible, as entangled states do not have any classical description.

Indeed, there are phases where no higher-dimensional classical analogs exist, going

beyond the LGW paradigm such as topological and fracton phases [20–22]. In

particular, we are interested in exotic critical points, encapsulated in what is known
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Figure 1.2: Examples of continuous phase transitions. (a) The transverse field Ising model phase
transition, between the twofold degenerate ferromagnet and a paramagnet; (b) the deconfined
quantum critical point between the Néel phase and the VBS phase, both symmetry-breaking
phases.

as deconfined quantum criticality (DQC) [4]: Continuous phase transitions between

two symmetry-breaking phases, where the leading fluctuations are not described

by the order parameter, but in terms of gapless degrees of freedom probed only

at the critical point. It was named in analogy to the confinement/deconfinement

transition present in gauge theories, commonly found in particle physics: In such

models, there are matter degrees of freedom ( electrons, quarks, ...) interacting with

gauge bosons (photons, gluons, ...). In the deconfined phase, both excitations can be

understood separately, such as photons in electromagnetism. However, in a confined

phase, matter bounds to gauge bosons generating new excitations which dominate

at low energies. This is what happens in quantum chromodynamics (QCD), where

three quarks, bound by gluons, make up protons, seen at low energies at the level

of nuclear physics.

The canonical example of DQC is the Néel-VBS transition [15], illustrated in

Fig 1.2(b) for the square lattice. On the left side, we have a magnetically ordered

antiferromagnetic phase, whereas a valence bond solid (VBS), a phase where spins
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form singlet states with their neighbors, resides at the other side of the transition.

Pictorially, one can understand the excitations of both ordered states as bound

states of a spinon- a chargeless spin-1/2 boson- with a photon, where the spinons

are the excitations at the transition. This is surprising, since all operators appearing

in the hamiltonian are written in terms of spin operators. This “fractionalization”

is responsible for a second-order phase transition, and is a pure quantum e↵ect.

A new landscape emerges: the classification of symmetry-breaking quantum

phases and corresponding transitions, which, to our understanding, may follow LGW

or be deconfined. In the large zoo of symmetries, our interest lies in a particular

one known as time-reversal symmetry: Acting on wavefunctions undergoing time-

evolution, the action amounts to an antiunitary operation which inverts the time

direction and complex conjugate numbers as t ! �t, i ! �i. For spin systems,

the action amounts to fully flip the spin operator, as T : �i ! ��i. In magnetic

phases, for example, h�ii 6= 0, and T is generally broken.

In a seminal paper, Wen, Wilczek and Zee [6] have proven the existence of a

non-magnetic, time reversal-breaking phase in two dimensions. Starting from models

assuming spin-rotation symmetry, They showed the existence of a chiral spin state

(CSS), which breaks time-reversal and parity. The corresponding order parameter,

defined as a triple product of spin operators, �i ·(�j⇥�k), is known as chirality. This

leads to an interesting picture shown in Fig 1.3: Spins are in “entangled triangles”

with an internal “current” determined by the sign of the chirality.

Figure 1.3: Depiction of a chiral spin state of a stripe of the square lattice.

Chiral spin states can host more exotic phases, which was the original inspi-

ration of the three authors. Those are denoted as chiral spin liquids, and are very

similar to the celebrated Laughlin state in the fractional quantum Hall e↵ect [23]:

Excitations have exotic statistics, and there are robust degeneracies depending on

boundary conditions, completely beyond the LGW paradigm. Chiral spin liquids
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are an example of phases generally known as quantum spin liquids [24–26]. How-

ever, it was only twenty years later that an exactly solvable model in the honeycomb

lattice was introduced by Kitaev [27], confirming the possibility of stable spin liq-

uid phases. Henceforth, a new research direction flourished, both in the theoretical

study of “Kitaev models” and in the search of materials which may host spin liquid

ground states [28, 29].

Going to one dimension lower, quantum phases are known to show a singu-

lar behavior: As first shown by Bethe [30], the one dimensional Heisenberg chain,

defined as H = |J |
P

i
�i · �i+1, has a gapless ground state, where the excitations

are fractionalized spinons. However, in contrast to the deconfined quantum critical

point, this is a stable phase, being robust to perturbations [31], and can be consid-

ered as an example of a gapless quantum spin liquid. However, as already discussed,

there are also LGW-allowed gapped phases, like the transverse-field Ising model. In

the midfield, DQC phenomenology was recently found in 1d [5, 32–34]. Previously

known transitions, such as Néel-VBS in one dimension, were recast as examples

of DQC-like criticality, containing many of the properties of the two-dimensional

counterparts.

Vector chiral magnetic phases were found in one dimension [35,36], where parity

is broken, while time-reversal is preserved. However, there are few examples of

spontaneously-broken time-reversal in a non-magnetic phase [37, 38]. By taking

a top-down approach, some questions arise: Is there a stable chiral phase in one

dimension ? By perturbing it, what is the nature of the transitions ?

In this thesis, starting from a spin model in a quasi-1D lattice developed in ear-

lier work [39], we construct spontaneously broken chiral spin states in one dimension

exactly and discuss phase transitions to other symmetry-broken states, showing the

presence of continuous phase transitions between them. In the second and third

chapters, we will review the necessary background to understand the main results

in the thesis: The second chapter deals with the framework necessary for under-

standing the LGW paradigm and the phenomenology behind deconfined quantum

criticality. The Néel-VBS transition is discussed in detail, since similar aspects of

the transition appear in our model and DQC physics is not as standard as other

topics in this chapter. The third chapter focuses on one dimension, discussing both

the avaliable field theory toolbox and known examples of deconfined-like critical-

ity. In the fourth and fifth chapters, we present the original work (except the first

two sections of the fourth chapter), constructing the spin model of interest and the
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corresponding chiral phase. In the fifth chapter, various limits of this model are

discussed, and phase transitions are analyzed using numerical and field theory argu-

ments. We conclude in the last chapter by reviewing the main results and proposing

open questions.

In this thesis, a mix of analytical and numerical results are presented. Analytical

work was done by myself with the help of my advisor, Prof. Rodrigo Pereira. The

numerical DMRG results were obtained by postdoctoral fellow Flávia Ramos, which

also produced the plots in Figs 5.4,4.9, and contributed to parts of other figures in

Chapters 4 and 5.



Chapter 2

Quantum phases and transitions

In this chapter, we will put the physics of quantum phases on a qualitative ground.

First, the Landau-Ginzburg functional formalism is introduced, along with its gen-

eral predictions about symmetry-breaking phases and shortcomings about phase

transitions. To correctly describe the latter, the tools from field theory and renor-

malization group are introduced. We will then conclude by expanding the Ising

model example and discussing how deconfined quantum critical points violate those

principles.

In the first section, we will introduce the Landau-Ginzburg functional and con-

struct some examples, roughly following [1, 16, 40]. For the second session, fluctua-

tions are supplemented and the general ideas from the renormalization group and

conformal field theory are introduced. A mix of quantum field theory textbooks

are taken as inspiration [2, 3, 18, 41]. In the last section, the physics of deconfined

quantum criticality is presented for the most well-studied example: The Néel-VBS

transition. We followed closely the presentation of the first two papers written on

the subject [4, 15], but will be developed here in detail, including the arguments of

fractionalization at the transition.

2.1 Landau-Ginzburg paradigm

As many successful physics frameworks, the LG theory can be constructed from phe-

nomenological inputs (many from experiments), and simple principles are derived.

First, one must define what the order parameter really means. In experiments,

19
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it was found that by cooling o↵ materials, there is a response to external fields

appearing at a critical temperature Tc:

| | =

(
0 (T > Tc)

| 0| > 0 (T < Tc)
. (2.1)

This behaviour emerges in seemingly unrelated and di↵erent materials, such as a

ferromagnet in Fig 2.1(b), where electron spins in a lattice orders in some direction,

or a superconductor, depicted in Fig 2.1(c), where electrons pair up in a state where

magnetic fields are expelled from the material and have zero resistence. In both this

cases, heating up will destroy both properties, see Fig 2.1(a).

Figure 2.1: Three di↵erent examples of macroscopic phases described by order parameters, denoted
 ,  FM and  SC .(a): A “disordered phase”, where the symmetries are preserved, and there is no
order parameter; (b) A ferromagnet, where, for low temperatures, the response to magnetic fields
as an aligned cluster of spins, which persists up to zero magnetic field ; (c) A superconductor,
where the absence of electrical resistance is accompanied by an expulsion of magnetic fields from
the material, known as the Meissner e↵ect. Image from [1]

As a side observation, systems can generally be endowed with symmetries: say,

for an electron gas, it does not matter if there is a translation is perfomed: in a

(su�ciently big) uniform sample, translating each particle leaves the state invariant.

Note, however, in the ferromagnet example, it is reasonable to have Heisenberg

interactions, where if one rotates both vectors involved a dot product, the answer do

not change. However, in a ferromagnet, all spins are pointing in the same direction!

This means that this supposed rotational symmetry is broken. This is the intuition

of an order parameter: It is a observable which somewhat “feels” the symmetries of a

system, which, despite being insignificant at high temperatures, at low temperatures

its non-zero values indicates that some symmetry has been broken.
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The mathematical definition is as follows. We will focus on vector-like order pa-

rameters. Consider a symmetry group G, under which the hamiltonian is invariant.

If some d-dimensional phase p breaks the symmetry into a subgroup Gp ⇢ G, we say

that there exists an order parameter  : Rd ! V , where V carries a representation

of G, that is:

8g 2 G ;  (x)
g�! ⇧(g) ·  (x) , (2.2)

where ⇧(g) is a linear transformation, and · acts as a matrix-vector multiplication.

In the phase p, the order parameter will be locked in some particular configuration:

h i =  p(x). Gp can be read as the set of transformations leaving  p invariant.

In the classical isotropic ferromagnet, the symmetry group is G = O(3), the

group of three-dimensional rotations along with reflections. Ferromagnetism is de-

scribed by pinning the order parameter in a uniform vector field in some direc-

tion h i ⇠ n. Rotations around n are not broken by this state, concluding that

Gp=FM = SO(2), the group describing rotations in two dimensions.

Energetics must be given by the microscopic system. That is,  must be un-

derstood as a “coarse-grained” collective variable, which somehow (1) accounts for

the fact that this must be a physical observable, responding to external fields; (2)

satisfies thermodynamic constraints. Let us define the order parameter in the lat-

tice scale. If the system is described by a quantum-mechanical hamiltonian H on a

lattice, the partition function is given as:

Z = Tr[e��H ] . (2.3)

In principle, if one would have access to all the eigenstates of the hamiltonian, all

the thermodynamic properties can be worked out and there would be no need for

anything else. However, as already commented in the introduction, this is generally

impossible, and some other description is necessary. We will start assuming the exis-

tence of an order parameter, and derive the consequences if energetics are governed

by such. The order parameter must have a lattice implementation on each site,

 i, which is a (vector) linear operator and acquires a non-zero expectation value.

Consider also an external conjugate field h 2 V such that h · i is a linear operator.

We then couple a “response term” to the hamiltonian:
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Z ! Z[h] = Tr

(
exp

"
��

 
H � h ·

X

i

 i

!#)
. (2.4)

A Gibbs energy functional can be obtained by computing G[h] = �lnZ[h]/�. The

expectation value of an induced order parameter is:

 (x = rj;h,N) = h ji =
1

Z[h]
Tr

(
 j exp

"
��

 
H � h ·

X

i

 i

!#)
= � 1

N

@G
@h

,

(2.5)

generally, for any h > 0, this order parameter must be non-zero, since this source

term explicitly breaks the symmetry. In order to study true spontaneous symmetry

breaking, one must take the thermodynamic limit and then turn o↵ the external

field, thus giving a definition of the order parameter:

 (x) = lim
h!0

lim
N!1

 (x;h,N) . (2.6)

However, it is not clear how to compute it. By inspection of eq. (2.5), this

definition is only useful with the full information of the spectrum of the hamiltonian,

which is exactly what we are trying to avoid. To proceed, consider the free energy

functional known as Landau function, which is a Legendre transform of the Gibbs

functional:

F [ ] = G[h] +Nh . (2.7)

Noting that h = N�1�F/� , for zero magnetic field, the dominant field configura-

tions satisfy:

�F [ ]

� (x)
= 0 . (2.8)

This can be understood as a functional equation. By minimizing the free energy,

the solutions describes the behaviour of the order parameter. With this insight,

symmetry can now be invoked: If G is a symmetry, one must consider only G-

invariant functionals:
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F [ ] = F [⇧(g) ·  ] . (2.9)

Of course, there is an infinite number of solutions for the above equation. The

first approximation, known as the Landau expansion, is to consider both uniform

configurations  (x) =  0, and Taylor-expand F for small | 0|, hoping to capture

the essential physics. The first non-trivial example is G = Z2, acting on a real order

parameter by flipping a sign  
Z2�! � . The Landau expansion is given as:

f( 0) ⌘
1

N
F [ (x) =  0] =

r

2
 2
0 +

u

4
 4
0 + · · · , (2.10)

where the constant O( 0
0) term was dropped. Truncating at fourth order, the min-

ima may be analyzed as a function of the phenomenological parameters (r, u). For

u < 0, there is a thermodynamical instability, corresponding to unphysical  ! ±1
solutions. For r > 0, u > 0, the minimum is  = 0. This is a disordered phase,

where the symmetry is preserved. For r < 0, u > 0, there are two minima, located

at  ±
0 = ±

p
�r/u: an ordered symmetry-breaking phase. Indeed, both minima are

connected by the symmetry, and this describes a continuous (since the minima dis-

appear smoothly) ordered-disordered transition for r ! 0±. This is also known as

a second-order phase transition, since the second order derivative of the free energy

has a discontinuity in this limit.

Symmetry rules it all: by only assuming that the order parameter can be written

(locally) microscopically, the above computation predicts that all Z2-invariant sys-

tems must have this transition at r = 0, which may correspond to a condition involv-

ing only the microscopic parameters of the hamiltonian and the temperature. Case

in point, Landau was interested in finite-temperature classical transitions, where r,

measuring the distance to the critical point, can be understood as a temperature

scale:

r ⌘ a(T � Tc) , (2.11)

the free energy profile is shown as a function of temperature in Fig 2.2(a). The easiest

example occurs in the classical Ising modelH = �J
P

hi,ji �i�j at finite temperature,

where the order parameter is the local magnetization �i, and the relevant symmetry

is spin inversion P : �i ! ��i. At high temperatures, spins are pointing in random
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directions, averaging out to zero: h�ii = 0. Cooling the system, suddenly a magnet

emerges below the critical temperature, breaking P spontaneously.

Figure 2.2: Landau theory of Z2 ordered-disordered transitions. (a) The free energy profile as a
function of temperature. For T > Tc, the system is at the  0 = 0 minimum. By cooling o↵ the
system, the symmetry is spontaneously broken, and one of the two ordered minima is chosen as the
macroscopic state; (b) The order parameter as a function of temperature. For zero magnetic field,
it is not a di↵erentiable function at T = Tc. If an external field is applied, say, favoring  +, the
ordered and disordered phases are “mixed” together, since the order parameter vanishes smoothly.
Image from [1].

A comment is warranted in the case of quantum phases, where T ! 0. Entropic

fluctuations disappear and the free energy is now an energy density f( 0) ⇠ "( 0),

otherwise, one has the same analysis. The transition is now driven due to some

parameter(s) in the hamiltonian H = H(�) reaching a critical value, and the r

parameter is introduced as r ⇠ � � �c. Indeed, the above Landau expansion is a

good first approximation to the transition of the transverse field Ising model in eq.

(1.2) [18]. The physics of quantum phase transitions will be further explored in the

next section.

Let us add back the source field as a physical probe field. The additional term

in the free energy is �f( 0) = h 0. Notice that the symmetry is now explicitly

broken, and there is an energy di↵erence between  +
0 and  �

0 . It means that, at

low temperatures, by smoothly varying the field from negative to positive values,

the order parameter will jump discontinuously from  +
0 to  �

0 . This is a first-

order phase transition, and is somewhat featureless: there is no symmetry left to

distinguish between the polarized phase and the disordered phase, See Fig 2.2(b).

The Landau expansion has some glaring problems on its assumptions. In eq.

(2.10), the supposed thermodynamic instability for u < 0 is actually cured if one

would add the O( 6
0) term. In this case, the free energy develops three minima, and
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the transition becomes of first order, similar to the e↵ect of an external field. This

illustrates a larger issue: After truncation, there is no guarantee that higher order

terms can a↵ect the structure of the phase diagram in the Landau expansion. This is

due of its phenomenological nature: The order is truncated when the corresponding

physics matches experiment/the model in question.

A second problem are at excitations: In the macroscopic regime, non-uniform

configurations of the order parameter can occur, and those can both be probed in

experiments and play an important role in the phase transitions. Examples include

domain walls in magnetic systems, and vortices in superconductors, which was the

aspiration of Vitaly Ginzburg and Lev Landau to extend the uniform expansion

to add spatial fluctuations of the order parameter [42]. In the Z2 example, one

promotes eq. (2.10) to:

F [ (x)] =

Z

Rd

ddx
hv
2
(r )2 + r

2
 2 +

u

4
 4 + · · ·

i
, (2.12)

where there is a new “kinetic term” which weighs fluctuations of the order parameter.

In · · · , there are terms that also involve higher order gradients and fields, such as

O(r2 2), along with the terms previously discarded in the uniform expansion. The

r and u terms now act as an energy potential for the order parameter, which we will

call V ( ). This becomes a (classical) field theory problem [43] : By interpreting F
as an action, the corresponding minima must satisfy some di↵erential equation. By

computing directly eq. (2.8):

(�vr2 + r + u 2 + · · · ) = 0 . (2.13)

To solve this equation, it is necessary to provide the order parameter at the bound-

ary, that is,  (|x| ! 1). Since F [ (x)] � V ( 0), note that the minima of the

potential still corresponds to the uniform configurations. For simplicity and later

interest, consider d = 1. In the ordered phase, for r < 0, we can study solutions

with “twisted” boundary conditions:

 0(x = �1) =  �
0 ;  0(x =1) =  +

0 . (2.14)

The solution, shown schematically in Fig 2.3, is known as a soliton:
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 dw(x) =

r
� r

u
tanh

✓
x� x0

⇠

◆
, (2.15)

where x0 is the position of the domain wall and ⇠ =
p
�v/r is the correlation

length, which measures how broad the overlapping region is, and therefore, the size

of the domain wall. They cost a finite energy �dw ⇠ ⇠�1. In a lattice model,

 dw corresponds to domain wall excitations in one-dimensional Z2-breaking phases.

Indeed, this is the case for the transverse field Ising chain, for example [18]. In some

sense, this is a counterintuitive result, since configurations which stay in the same

vacuum, for example  (x! ±1) =  +
0 costs twice the energy, since it is necessary

to create a soliton and an “anti-soliton”- a soliton with the boundary conditions

in eq.(2.14) reversed- pair. Upon quantization, domain walls give us interesting

relations between boson and fermion fields in one dimension, discussed in the next

chapter.

Figure 2.3: A soliton configuration tunneling between two di↵erent vacua in the ordered phase. ⇠
is the correlation length, identified as the length of a domain wall. Image from [1].

However, rarely one has both a single order parameter and just a single Z2

symmetry. In general, one can have multiple competing symmetry-breaking phases

in a single system. Let us study the predictions for a two-component real order

parameter  = ( 1, 2), transforming under a G = (Z2)1 ⇥ (Z2)2 symmetry, where

the subscripts indicate which component the symmetry acts, e.g.: ( 1, 2)
(Z2)1���!

(� 1, 2). The corresponding energy potential is given as:

V ( 1, 2) =
r1
2
 2
1 +

u1

4
 4
1 +

r2
2
 2
2 +

u2

4
 4
2 +

v

4
 2
1 

2
2 + · · · , (2.16)

a phase diagram is again computed by minimizing V . The calculation is similar to
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the simple Z2 case, although more involved and not particularly illuminating [40].

Here we will state the results. Four phases are found: a disordered phase with

( 1 = 0, 2 = 0), two individually-ordered phases with ( 1 6= 0, 2 = 0) and

( 1 = 0, 2 6= 0) (which we will call phase 1 and 2, respectively), and a mixed phase

( 1 6= 0, 2 6= 0). In the 5-dimensional phase diagram (cutting out thermodynamic

unstable regions), our interest lies in what happens between the phases 1 and 2: For

the ordered-disordered transitions, there is a continuous phase transition, as already

discussed.

Two situations can generally occur, as illustrated in Fig 2.4(a): It may have a

first order transition between the two phases, or both are separated by the mixed

phase. Continuous phase transitions are fine-tuned ! One must tune the parameters

to kill o↵ the mixed phase between ordered phases, see Fig 2.4(b). This is not the

case for the ordered-disordered transition, where the smooth vanishing of an order

parameter is generic.

The intuition behind this result comes from a higher-dimensional generalization

of the picture of a second-order phase transition in Fig 2.2(a): Let us start from

some point in the phase diagram where the minima of the free energy corresponds

to the phase 1 pair. To have a continuous phase transition, one must pick a path

in the parameter space where both minima fuse exactly in ( 1 = 0, 2 = 0). On

general grounds, this must also correspond to a point in the phase diagram. Indeed,

there are tricritical points, connecting the mixed and both phases 1/2, of continuous

character.

Thus, in order to have robust second-order phase transitions between ordered

phases, it is necessary to have some sort of protection not captured in this analysis.

Otherwise, the transition just becomes of first order. However, there is a notable

exception: Consider two symmetry-breaking phases 1 and 2 preserving Gp,1, Gp,2 ⇢
G, respectively. If G1 C G2, that is, one group is a normal subgroup

1 of the other, a

continuous phase transition is allowed: Starting in the phase 2, one can write a G2-

invariant free energy functional. One can then understand the phase transition from

phase 2 to phase 1 as an order-disorder transition, where the symmetry breaking

pattern G2 ! G1 appears as classical vacua in this free energy. Examples will be

presented in the fifth chapter.

1A normal subgroup is a subgroup where its elements are invariant under the adjoint action of
the full group [44]
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Figure 2.4: A one-dimensional cut in direction p of the phase diagram obtained by minizing
eq.(2.16). (a): The two expected scenarios for an ordered-ordered phase transition. In the left, a
first order transition occurs, where the minima of the free energy is changed abruptly. In the right,
a second scenario where there is an intermediate region where both phases coexist. p1, p2 are some
values of the parameters where the order parameter of each phase vanishes; (b) To get a proper
continuous phase transition, one must fine-tune p1 = p2 = p⇤.

However, the above framework treats continuous phase transitions and first-

order phase transitions in the same physical ground: Even if there is a thermody-

namic distinction, what actually happens to the degrees of freedom in the system

in both cases, for example, such as the domain wall excitations in the transition?

Classical field configurations do not capture such fluctuations correctly. We will

tackle such questions in the next section.

2.2 The renormalization group and the Landau-

Ginzburg-Wilson paradigm

So far, we have been ignoring the question of observables beyond the order param-

eter. One might ask about thermodynamics, which shows signs of the interesting
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properties of second-order phase transitions [1]. Since our interest lies in quantum

phases, a di↵erent approach will be taken, probing another class of observables:

correlation functions.

Since the classical case is a limit of the quantum case, let us consider again a

microscopic system on the lattice and an operator Ai defined on the lattice site ri.

The corresponding correlation function is given as:

G(ri, rj) ⌘ hAiAji . (2.17)

The average h· · · i can be taken on a ground or thermal state. This object

measures how correlated di↵erent degrees of freedom are as the distance is changed.

In ground states, a quite general result is avaliable due to Hastings and Koma [45,46]:

Let �E be the energy di↵erence between a ground state and the rest of the spectrum

in the thermodynamic limit, known as the energy gap. The result is the presence of

exponential decay of correlations:

G(ri, rj) ������!
|ri�rj |!1

const.⇥ exp

✓
� |ri � rj|

⇠

◆
, (2.18)

where ⇠ is also known as the correlation length. Intuitively, this corresponds to

disordered states, since there is no degeneracy. Otherwise, for ordered states, by

letting Ai =  i be the order parameter, the correlation factorizes at long distances:

G(ri, rj) ������!
|ri�rj |!1

h iih ji+ const.⇥ exp

✓
� |ri � rj|

⇠

◆
, (2.19)

which saturates to a constant at very long distances due to the first term. We have

already encountered the correlation length in the analysis of excitations of ordered

phases. One can then interpret that eqs. (2.18),(2.19) are the result of fluctuations :

Even if the average is taken in the ground state, this exponential decay occurs due to

the creation of finite energy cost “particles”, such as the previously studied domain

walls, or localized excitations in the disordered phase. Exactly due to this finite

cost, they have a finite length. Those are gapped excitations.

A few remarks on terminology: In quantum phase transitions, the main observ-

able is the energy gap from the ground state: If excited states above the ground
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state costs finite energy (in the thermodynamic limit), we say that the correspond-

ing phase is gapped. Otherwise, the system is gapless : Excitations can be created

to a continuum of states, without energy cost. This is a very important distinc-

tion because there are a plethora of rigorous arguments for the stability of gapped

phases [47], mainly around the adiabatic principle: For a gapped ground state, one

can generally change the parameters of the Hamiltonian “slowly” without creating

excitations, and therefore leaving the state invariant. In the gapless case, pertur-

bations can generate excitations arbitrarily, and it is quite hard to prove stability

on general grounds. A continuous quantum phase transition between two gapped

phases, generally can be understood by the process of “condensation”: The excita-

tions of the ordered phase become gapless at the transition.

For zero temperature, the LG functional can be understood as an energy density.

Consider a quantum hamiltonian H = H(�), where � represents the microscopic

parameters. In second-order phase transitions, the energy gap scales as:

�E ⇠ |�� �c|�⌫ , (2.20)

where ⌫ is known as a critical exponent, and �c parametrizes the critical region.

For the Z2 example, �E ⇠ |r|�⌫ . In fact, one can associate a correlation length

⇠ by introducing a dynamical exponent z > 0, such that �E ⇠ ⇠�z. This means

a diverging correlation length at the transition. This is a striking feature: We say

that the gapless excitations of a continuous phase transitions have slow decay of

correlations. Indeed this can be encoded in a emergent symmetry which is present

only at the transition, which is one of scaling, written at the continuum as D :

x! x/b. Under this operation, eq. (2.19) is only invariant if the correlation length

is transformed in the same way. In fact, scaling invariant systems, in general, are

described by slow-decaying power law correlations G ⇠ |ri � rj|��, where � is an

exponent determined by the operators whose correlations are measured, as will be

explained later.

Such features shine light on the incompleteness of the LG functional. It needs to

be accompained by fluctuations of the order parameter. We can associate Boltzmann

weights to each field configuration as exp(�F [ ]), and sum over all field configura-

tions as any statistical mechanics problem. This is known as a path integral, and a

partition function can be formally defined:
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Z ⌘
Z

D� exp(�S[�]) , (2.21)

where S[�] is the action, which is classically the same as the LG functional. This

measure integrates over field values in all points in space D� /
Q

x d�(x). Until

now, there is no clear connection between the lattice degrees of freedom and the

LG construction in terms of continuum fields, beyond the symmetry group. In fact,

the order parameter viewpoint has some “coarse-graining” attached to it, that is,

physically it can be understood as the average of the lattice order parameter in some

region. For example, for the classical Ising case:

�(x) ⇠
X

j2Mx

h�ji , (2.22)

that is, the field represents a magnetization average around some region in the lattice

Mx near x. This is an actual starting point for the original Landau theory from

the microscopic hamiltonian H, where the interactions are decomposed in terms

of the fields. (The pure Landau theory is also known as mean-field theory). This

indicates that, if the lattice is dL-dimensional, dL = d, the dimension of the action.

This is indeed what happens in classical systems. In quantum systems, fluctuations

do generate an e↵ective extra dimension, and so d = dL + 1. This is due to the

fact that, in classical statistical mechanics, the field action in the Boltzmann weight

corresponds to the hamiltonian. However, in the quantum system, the microscopic

partition function in eq.(2.3) must be computed on a basis, and because states are

constructed from a non-commuting algebra, it is necessary to consider the action

from the Legendre transform of the hamiltonian, which adds an extra dimension.

The simplest case is for a quantum particle and is worked out in detail in [48]. For

a hamiltonian which has a clear continuum limit, H =
R
ddLx H, where H is the

corresponding hamiltonian density, one can compute the partition function written

in eq. (2.3):

Z = Tr[e��H ] =
X

i

hi| exp(��H)|ii =
Z

PBC

D[d.o.f] exp (�S[d.o.f]) , (2.23)

reduced to eq. (2.21) from scalar fields. We now have an “euclidean action” of

the type S =
R
d⌧ddLx(· · · ),where we have defined ⌧ = it, dubbed imaginary time.
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We refer to (⌧,x) as a point of “spacetime”. A subtle detail is that only periodic

boundary conditions are considered in imaginary time. Locally in the lagrangian,

this imaginary time direction can just be incorporated as another coordinate. How-

ever, for “global” considerations, such periodic boundary conditions can have non-

trivial e↵ects. Note that this result indeed reduces to the form of eq. (2.21), with

d = dL + 1. This is also sometimes called the quantum-classical correspondence,

where a quantum-mechanical partition function is written as a statistical average

of a classical action. Specifically in the field theory context, this is referred to as

statistical field theory or (euclidean) quantum field theory. Correlation functions

are now defined in this formalism as:

G(x,y) = hO(x)O(y)i = 1

Z

Z
D� O(x)O(y) exp(�S[�]) , (2.24)

as any statistical mechanics problem. Given some action, computing field theory

observables is something of an art in theoretical physics, and is well-developed in

many references [1,3,10,41,49,50]. We will be brief and focus on the physical insights

of statistical/quantum field theory related to the renormalization group.

The quoted results on correlation functions reveal a deeper connection between

length and energy scales. As discussed, the physics of quantum phases is the physics

of ground states and the corresponding low-energy excitations. In a lattice, there

is a minimum length scale, a, which is the distance between lattice sites. The idea

is that all the relevant properties of a macroscopic phase must be encoded in long

distance correlations, in distances way larger than a lattice scale. Henceforth, low

energies corresponds to long distances (and high energies, with short distances).

In a partition function defined on the lattice, one can then only consider states

which, as one “zooms out”, become significant. This procedure is known as the

renormalization group (RG).

Let us revisit our Z2 example. It is useful to isolate the kinetic and potential

part of eq.(2.12), by using the action notation:
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S = S0 + SV , (2.25)

S0 =

Z

Rd

ddx
1

2
(r�)2 , (2.26)

SV =

Z

Rd

ddx
hr
2
�2 +

u

4
�4 + · · ·

i
, (2.27)

where we have redefined the parameters such that v = 1. Note that the pure kinetic

term action S0 is invariant under D, if the field is redefined as:

�
D�! �0 = b(D�2)/2�; , (2.28)

which is a physical transformation: By eq.(2.21), the action must be dimensionless.

Therefore, due to eq.(2.26), the field must have dimensions [�] = (length)�(D�2)/2,

explaining the above transformation law under scaling. Therefore, if SV is ignored,

we are sitting in a critical point! This is known as the Gaussian fixed point. The

correlation function of two fields can be computed for long distances under this

action, giving a power law behaviour:

h�(x)�(y)iGaussian ⇠
1

|x� y|d�2
, (2.29)

which can be understood as the proper ⇠/a ! 1 limit of correlation functions,

while manifesting scale invariance. Due to the absence of scales in the critical point,

note that correlations only depend on the dimension present in the exponent. We

say that the terms in SV are “dimensionful”, due to the nontrivial field dimensions.

To study how such terms behave at long distances, we will study the properties of

the Gaussian theory and study the other terms as proper perturbations. S0 also has

three additional symmetries:

• Translations: T : x! x+ a ;

• Rotations: SO(d) : x! R · x such that detR = 1 ;

• Special conformal transformations, whose action is rather involved and not

very important to our present discussion;
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Those three symmetries combined generate the conformal group in d-dimensions,

and field theories with this symmetry are known as conformal field theories (CFTs)2.

This is also a huge topic on its own right [17], and we will only go through the re-

sults which are needed in our further analysis in the next chapters. Reason being,

the symmetry group is so large that it constrains much of the physics, and a lot of

results can be proven, a rare case in quantum field theory overall. Field theory, as

defined, is the study of fluctuating fields given some classical action. One can then

ask about observables. Well, we can allow anything of the form hf(�)i. It turns

out that, in CFTs, one can classify what is known as the “operators” of the theory

(referring to the canonical form of field quantization, opposed to the path integrals

studied here) by just analyzing how they transform under the conformal group. In

practice, this generally means a (infinite) list of fields (or a simple function thereof),

defined on a point of spacetime such as {�,�2,�3r�, · · · }.

Let {Oi(x)} be the set of operators of a theory (the index i here denotes some

ordering in this set, there is no connection to a lattice), and consider the two-

point correlation functions Gij(x,y) ⌘ hOi(x)Oj(y)i. Invariance under translations
imposes Gij(x,y)! Gij(x� y), and rotations imposes Gij(x� y)! Gij(|x� y|).
Scale invariance, as discussed, acts both on field operators and space. Consistency

under D requires 3:

Oi

D�! O0
i
= b�iOi , (2.30)

as the field � in our previous example. �i 2 R is known as the scaling dimension of

the operator Oi. Therefore, since:

Gij(|x� y|) = hOi(x)Oj(y)i
D�! Gij(|x/b� y/b|) = b�i+�jGij(|x� y|) , (2.31)

Gij is a homogeneous function of degree ��i � �j. Due to Euler’s theorem, the

solution must follow a power law:

2Obligatory remark: Not all RG fixed points are CFTs (but scale and rotational invariance
implies conformal invariance under local interactions [51]). However, there are a lot of examples
where this is indeed the case, and certainly all treated on this thesis are.

3Mathematically, this action under D implies that Oi transforms irreducibly under dilatations
[17, 41]
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Gij(|x� y|) ⇠ 1

|x� y|�i+�j
, (2.32)

agreeing with the result computed for the gaussian theory for d > 4 in eq.(2.29),

for �i = �j = (d � 2)/2. This is the slow decay of the correlations of continuous

phase transitions, and it can be probed on the lattice, by evaluating correlations

of well-separated operators. Consider now multi-point correlation functions of the

form hOi (xi)Oj (xj)� (x1, · · · ,xn)i in the situation depicted in Fig. 2.5: the first

two operators are near each other far away from the operators defined at �. At long

distances, operators at x1,x2, · · · “see” the e↵ects of Oi and Oj at the midpoint.

This means that, under correlation functions one can expand the product OiOj in

the set of scaling operators of the CFT evaluated at the midpoint:

Oi(xi) · Oj(xj) ⇠
X

k

cijk
|xi � xj|�i+�j��k

Ok

✓
xi + xj

2

◆
. (2.33)

This is known as the operator product expansion (OPE), and describes the lead-

ing singularities which describe the theory. The power-law exponent is fixed by

conformal symmetry, balancing the mismatch of scaling dimensions for each term.

Constants cijk are called structure constants, and encode how the operators are

generated in correlation functions.

Figure 2.5: Pictorial representation of the operator product expansion: Operators defined on � are
far away from the xi and xj points. As both points get closer together, correlations between those
points with � may well be described by single operators defined in xk near both points. Adapted
from [2].
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We are now ready to state the main principle behind the renormalization group.

Consider perturbing any conformally invariant action with a subset of scaling oper-

ators:

S = S0 +
X

j2S

gj

Z
ddx Oj(x) , (2.34)

If one starts with a field theory described by couplings {gj} and a partition function

Z(g), after a scaling transformation we impose the invariance of the theory by

redefining the coupling

Z D�! Z 0(g0(b)) = Z(g) . (2.35)

Note that the new couplings depend on the scale on which the physics is now probed.

For an infinitesimal scale transformation, define b = ed` ' 1 + d`, g0 ' g + dg/d`d`.

It can be shown that the renormalization group equations must be satisfied:

dg̃k
d`
⌘ �gk(g) = (�k � d)g̃k �

Sd

2

X

i,j2S

cijkg̃ig̃j + · · · . (2.36)

where dimensionless variables are defined: g̃i = gia�i�d. Sd is is the surface area

of the hypersphere in d dimensions. �gk is known as the beta function of gk, and

is responsible for the RG flow. The first order term could be derived only from

dimensional grounds by studying how the perturbation scales under D. The second

order term captures correlations from the OPE. In fact, the derivation above shows a

perturbative nature in the construction of the couplings g. To go beyond ⇠ g2 (also

known as “one-loop” order), it is necessary to probe a next layer of singularities not

captured by OPEs, and use techniques from quantum field-theoretic renormalization

[49]. For our purposes, the RG equations at one loop already su�ces.

Note that we have a “trivial” fixed point where �gi(g = 0) = 0 , 8gi: In our

example, this is just the Gaussian fixed point. Now that we are acquainted with

the general structure of the renormalization group, there are roughly three di↵erent

destinies for some coupling gi, given some initial condition at ` = 0:

• �gi > 0: The coupling grows with the length scale, and is said to become

relevant ;
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• �gi = 0: The coupling doesn’t change with the length scale, denoted as

marginal ;

• �gi < 0: The coupling decreases with the length scale, and becomes irrelevant.

Generally, only marginal and relevant terms needs to be studied to understand

the long-distance physics. Relevant terms are generally responsible for the gapped

excitations and phases, and marginal terms renormalizes the operators defined on the

fixed point. Irrelevant operators are “washed away” at long distances, and generally

do not a↵ect the physics. However, an exception sometimes occurs in symmetry-

breaking phases, where new vacua are generated. In this case, the leading irrelevant

operators may strongly influence the low energy states; known as dangerously irrel-

evant operators. This is the case for the u�4 operator in eq. (2.27) [3].

Beyond gapped phases, the RG flow may reveal new fixed points, defined by

�gi(g
⇤ 6= 0) = 0 , 8gi. In this case, something interesting can happen: the phase

transition may be described by a di↵erent fixed point than the initially perturbed

one. It is said to have another universality class : Power law exponents of correla-

tions, for example, may be di↵erent, since it is a di↵erent CFT.

For completeness, we will state the results found for the Z2 example. It is useful

to define the parameter " = 4�d, and we will define � = 6u. The general behaviour

of the beta function of � is shown in Fig 2.6(a). For " < 0, the previous analysis

holds even with the one-loop corrections: The transition between disordered and

ordered phases is Gaussian. For " > 0, there is a new, non-trivial fixed point, which

appears at order ". The phase diagram emerging from the RG flow is shown in

Fig 2.6(b): There is a separatrix between the Gaussian and the non-trivial fixed

point. The e↵ects of fluctuations have non-trivial e↵ects: For example, If r0 < 0 but

small, the theory flows to the disordered (paramagnet) phase, instead of the ordered

(ferromagnet) phase predicted by the LG functional.

This new fixed point is known as the Wilson-Fisher (WF) fixed point, also

named the Ising CFT. One can compute the thermodynamic exponents from a

" ⌧ 1 expansion, and compare to the results of numerical simulations of Ising

models: There is amazing agreement even for " = 2, well out of bounds of the

convergence radius in the solution [3]. However, the physics at the transition and

corresponding degrees of freedom is only well understood analytically for d = 2,

explored in the next chapter.
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Figure 2.6: Infrared behaviour of the RG flow of Z2 action. (a): Beta function profile of the �
coupling: A new zero emerges as long that d < 4, or ✏ > 0; (b) The RG flow solution for d < 4.
The flow direction is pointed out in the lines: Starting from the Gaussian fixed point, one can see
that it is in fact unstable, and the flow in the separatrix goes to the Wilson-Fisher fixed point.
Any small perturbation of the relevant operator r will generate both ordered (ferromagnetic) and
disordered (paramagnetic) phases. Images from [3].

On the Z2⇥Z2 example with the potential shown in eq. (2.16), a similar result

occurs. If v = 0, the phase diagram would be just “two copies” of Fig 2.6(b),

with two di↵erent WF fixed points. By taking v 6= 0, perturbatively, there is no

expectation of new fixed points, only a change in the flow: Case in point, one can

then flow from the phase 1 to the phase 2, without necessarily hitting the fixed

points. This is a first order phase transition microscopically, but it is a process that

holds no special place in the long distance physics.

The symmetry-respecting expansion of the action and corresponding renormal-

ization group analysis around a gaussian fixed point is the theoretical trademark

of the Landau-Ginzburg-Wilson paradigm. It is indeed very successful in classical

models [9], and in the study of symmetry-breaking quantum phases [18]. However, in

the latter, there is a class of transitions in which the local order parameter viewpoint

breaks down, studied in the next and last section of this chapter.

2.3 Deconfined quantum criticality

We will be interested in quantum spin-1/2 models in two dimensions. We will show,

by working a specific example, that it is indeed possible to have a continuous phase
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transition between ordered phases. Furthermore, at the transition, the correspond-

ing field theory is now described by any of the two order parameters, but by a new

“deconfined” excitation defined only at the transition. We will also show that this

behaviour is of a gauge theory, generally used in particle physics to describe interac-

tions. Since we are in a dimension lower than our universe, the physics can change

drastically even with the simple-looking Maxwell electrodynamics [4, 15].

Quantum spin models can be defined on any lattice by just stating that there

is a spin-1/2 Pauli degree of freedom on each site i, �i = (�x

i
, �y

i
, �z

i
), satisfying:

[�↵
i
, ��

j
] = i�ij✏

↵����
i
, (2.37)

where the index � is summed over. In particular, let us consider a hamiltonian with

the following symmetries:

• Spin rotation symmetry SO(3): Every spin is rotated globally in the funda-

mental representation: �↵
i
! U †(R)�↵

i
U(R) = R↵

�
��
i
, given a rotation matrix

R ;

• Translations Tx, Ty: Translation of unit length (a = 1) in the cartesian x and

y directions, respectively: �i

Tx�! �i+x̂,�i

Ty�! �i+ŷ ;

• Lattice rotations R⇡/2: ⇡/2 rotations of the lattice sites;

• Time reversal: An anti-unitary symmetry whose action flips the sign of spin

operators, � ! ��.

The lattice symmetries span the square lattice. It is useful to picture a hamil-

tonian with Heisenberg-like interactions:

H = J
X

hi,ji

�i · �j + · · · , (2.38)

where hi, ji indicates sum over nearest neighbours. We will limit ourselves to anti-

ferromagnetic couplings, that is, J > 0. We will now suppose that there exists then

a Néel phase, where the spins are ordered antiferromagnetically in some direction in

space, as depicted in Fig.2.7.
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Figure 2.7: The Néel state in the square lattice. The spins are pointing in a staggered configuration
defined by some direction n, drawn pointing in the plane of the lattice for simplicity.

The order parameter is the staggered magnetization, defined as:

h�ii = (�1)P (ri)n , (2.39)

where P (ri) = ±1 is +1, �1 for even and odd sublattices, respectively.

There is a distinct continuous description of such ordered phases, which are not

directly given by the LG functional, but in a similar sprit. For now, let us ignore

the role of lattice symmetries. The relevant group is then SU(2) with time reversal,

both broken by the Néel state. There is a subgroup of the broken symmetry which

is still present: rotations around n (as occuring in the ferromagnetic state), defined

by Gp = U(1). Then, one can understand the degeneracy by evaluating the coset

SU(2)/U(1) ' S2, that is, the number of configurations on the two sphere. A

proposed (infrared) partition function is given as:

Z0 =

Z

n2=1

Dn exp (�S0) =

Z
Dn �(n2 � 1) exp

✓
� 1

2g

Z
d3x (rn)2

◆
, (2.40)

where n is now promoted to a (vector) field which can fluctuate in space, constrained

to have unit length, by summing configurations which satisfy the functional delta.

This is known as the non-linear sigma model (NL�M) in the target manifold ⌃ =

S2. Note that, in some sense, eq. (2.40) is already a theory at long distances,

describing the vector fluctuations of the macroscopically observed Néel state. As is

commonly the case for non-linear sigma models, it comes from a high-energy theory,

and indeed, for our case, it comes from a LGW scheme. The order parameter field
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is O(3)-covariant, written as �(x). Then, in the potential expansion written as

V (�) = r�2 + u(�2)2 + · · · , the ordered state have minima at �(x) ⇠ |�0|n(x),
where n is a unit vector. By flowing in this limit and ignoring (safe) irrelevant terms,

eq. (2.40) is obtained. However, note that this generally describes a ferromagnetic

phase. The correct Néel vacua must involve two fields, such as SLGW[�1,�2], in

order to correctly describe both sublattices with minima �1 = ��2 ⇠ |�0|n(x). In
this representation, lattice translation operators permute the sublattices 1 and 2.

This means that the expectation of ignoring lattice symmetries in the continuum is

short lived. However, in the end, this procedure leads to the same infrared NL�M.

Is there a di↵erence between antiferromagnetic and ferromagnetic excitations?

The surprising feature is that, in this model, there is a “hidden” symmetry-

allowed term:

SB =
i

2

X

j

(�1)P (rj)A(rj) =
i

2

X

j

Z
d⌧ (�1)P (rj)A(n) · @⌧n(rj) . (2.41)

This is known as the Berry phase term, and A is a vector field such that, for any

closed path P on S2,
R
P
dn ·A = ⌦P , where ⌦P is the solid angle encircled by such

orbit. A can be interpreted as a vector potential of a monopole on each lattice site.

A naive continuum limit would not have this term in the action, since it oscillates

on the lattice, and is linear on n. To properly explain why this term is present, it is

necessary to go through the proof of path integral quantization of quantum spins,

which is nicely exposed in Auerbach’s book [52].

For the overall properties of the Néel phase, this term indeed does not matter,

but it plays an important role in a transition to a distinct symmetry-breaking phase:

The Berry phase a↵ect non-perturbative instanton e↵ects [53, 54]. They occur in

ordered phases, and represent the tunneling between di↵erent vacua. Manifested

at the imaginary times, one may write a instanton configuration by considering a

particular vacuum in ⌧ ! �1 to another vacuum in ⌧ ! 1. Most of the time,

the instanton itself can be represented as a particle, that is, a localized excitation

sandwiched between the two low-energy backgrounds. They contribute to the path

integral by summing over all distinct instanton configurations.

In the most simple example, consider a one-dimensional quantum mechani-

cal particle in a double well, that is, a potential of the form V (x) = ax2 + bx4.
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The symmetry is a Z2 symmetry, the spatial parity P : x ! �x. Indeed, in the

imaginary-time path integral, this is equivalent to our Ising-like example, with d = 1,

and x = x(⌧) playing the role of the order parameter. We have already found such

instanton configurations: They are the solitons/domain walls4 studied in the last

section. Summing over instantons give an “instanton gas” picture: Such configu-

rations are equivalent to putting instanton/anti-instanton pairs on a circle, since

imaginary time is periodic [3].

Note however, that they are “heavy” excitations: to tunnel between minima of

the potential, there is an energy barrier between then. Therefore, deep in an ordered

phase, it may be that the leading (lightest) excitations of the spectrum are around a

fixed minima: We want to investigate the properties of the Néel phase and possible

phase transitions if we consider the e↵ects of instantons and Berry phases.

On the other hand, in classical magnets, there are configurations known as

skyrmions. They are robust due to the presence of a topological invariant Q 2 Z,
which counts the number of skyrmions, which can be written in terms of the Néel

vector:

Q =
1

4⇡

Z
d2x n · (@xn⇥ @yn) . (2.42)

This is known as the skyrmion charge, and is zero for uniform spin configurations.

The quantization implies that it is impossible to destroy a skyrmion by smoothly

varying n
5. An illustration of a Q = +1 skyrmion in the (x, y) plane is shown in

Fig 2.8.

Such configurations may be included in the path integral. Since their origin

comes from a topological current, classically conserved, indeed it reflects a topologi-

cal U(1)T symmetry. However, they can also be manifested as instantons, tunneling

between the classical vacua of the Néel phase. To see that, interpret Fig 2.8 as the

(x, ⌧) plane in the horizontal and vertical directions, respectively (while maintaining

y as a constant). Comparing the top and bottom part of the figure, corresponding

to ⌧ ! ±1, one can see that the spin directions are interchanged. Instantons

itself are created adding non-local terms in the lagrangian in terms of “monopole

4Solitons is the name reserved for configurations which tunnel in di↵erent vacua in real space,
while instantons refer to tunneling processes in imaginary time.

5Those arguments are mathematically rigorous. The existence of such quantized invariants
emerge from considerations of homotopy theory [55].



CHAPTER 2. QUANTUM PHASES AND TRANSITIONS 43

Figure 2.8: A skyrmion in n. The arrows show the projection of n in the (x, y) plane, and we
are ignoring the sublattice oscillation (�1)P which happens in the physical lattice spins. Image
from [4].

operators” [54]:

Lm =
1X

n=1

�n(x, y)
�
[M(x)]n +

⇥
M†(x)

⇤n�
, (2.43)

where the couplings {�n} are noted as “monopole fugacities”. Those terms spoils

this U(1)T symmetry, since M creates and destroys skyrmions in spacetime. This

is where the Berry phase term becomes important: As shown by Haldane [53],

configurations which change the charge Q in spacetime contribute to the sum:

SB =
i⇡

2

X

m

⇣m�Qm , (2.44)

Given a spin configuration n, this action is computed as follows: m is the position

of the instantons of a given configuration (also called monopoles) which create or

destroy a Skyrmion on some plaquette of the square lattice, and ⇣m = 0, 1, 2, 3 is

an integer field which depends on the dual lattice parity of the plaquette. Due

to periodic boundary conditions in the time direction, configurations must have

instanton (�Q = 1) and anti-instanton (�Q = �1) pairs such that
P

m
�Qm = 0.

Note the imaginary nature of this action. Since it will be exponentiated in the

partition function, it is only defined modulo 2⇡, and thus each ⇣m is only defined

modulo 4, as is the case. Each configuration n contributes with exp(�iSB). Let us

evaluate the e↵ect of the terms in (2.43). For n = 1, this term creates configurations
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where there is a instanton/anti-instanton pair, contributing with a phase:

exp(�iSB) = exp
⇣
�i⇡

2
(⇣f � ⇣i)

⌘
, (2.45)

where ⇣f and ⇣i are the integers labelling the final and initial plaquettes. However,

for any such configuration, one can just take another configuration with ⇣f and

⇣i shifted by one plaquette, the phase picks up a minus sign. Therefore, there is

a destructive interference in the path integral, and single instanton configurations

do not contribute. This argument also follows for n = 2, 3. However, for n = 4,

eiSB = 1, and there is constructive interference. Therefore, the lowest order terms

are fourth-order monopole operators:

Lm ⇠ �4(x, y)
⇣
[M(x)]4 +

⇥
M†(x)

⇤4⌘
. (2.46)

Still, the physical nature of such operators is not clear from this argument. That

is, starting from the Néel phase, and considering the instanton e↵ects, in eq. (2.46),

what happens? Is there a phase where hMi 6= 0 ?

Instantons, from their definition, involve fluctuating from di↵erent vacua and are

therefore non-perturbative: The physics at long distances can be hard to evaluate, in

contrast to the LG-expansion discussed previously. However, one may point out the

similarity of this problem to the celebrated Kosterlitz–Thouless transition [56], where

two-dimensional vortex-antivortex pairs can generate a transition to a disordered

phase. This is indeed what is expected from a high-energy LGW theory, where a

continuous phase transition would occur from the ordered state to � = 0. However,

the result here is surprising.

The physical lattice operators corresponding to the monopoles can be obtained

from symmetry principles. However, it is a subtle calculation, since one must re-

spect the covariance under the symmetries of the lattice. For example, n is odd

under lattice translation Tx, Ty, since it corresponds to a alternating antiferromag-

netic vector. Therefore, T�1
x,t QTx,y = �Q, and skyrmions and antiskyrmions are

interchanged. Therefore:
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M†(x)
Tx�! �iM(x+ xx̂) , (2.47)

M†(x)
Ty�! +iM(x+ yŷ) , (2.48)

where x̂, ŷ are unit vectors in the spatial x and y directions. The ei⇡/2 = i factor

is the Berry phase di↵erence of the monopole placed in two di↵erent neighboring

plaquettes. Similar considerations also lead to the transformation law under ⇡/2

lattice rotations:

M†(x)
R⇡/2���! iM†(x) . (2.49)

Finally, M must be invariant under the SU(2) spin symmetry. The simplest lattice

operator satisfying such transformation law are the following spin bilinears:

M(x = rj) ⇠ ei⇡/4 [(�1)xj�j · �j+x̂ + i(�1)yj�j · �j+ŷ] ⌘ ei⇡/4 VBS(rj) . (2.50)

A lattice site is written as rj = xjx̂ + yj ŷ. The field  VBS describes the order

parameter of a new phase completely distinct from the Néel phase, known as the

Valence Bond Solid (VBS), pictured in Fig 2.9. The ideia is that the bolded bonds

are spin singlets, and the phase of  VBS describes the overlap between “columnar”

VBS or “plaquette” VBS. By decomposing  VBS = | VBS|ei�, note that eq. (2.46)

is written:

Lm ⇠ �4| VBS|4 cos(4�+ ⇡) , (2.51)

where the monopole fugacity �4 is taken to be uniform. Suppose �4 is a relevant

coupling: For either sign of �4, there are four distinct vacua (for example, for �4 < 0,

we have � = �⇡/4, ⇡/4, 3⇡/4, 5⇡/4), breaking the highlighted lattice symmetries:

Translations Tx, Ty and R⇡/2. Since spin singlets are SU(2)-invariant, the spin

rotation symmetry is preserved.

Therefore, instanton “condensation” is the VBS order:

hMi ⇠ h VBSi 6= 0 . (2.52)
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Figure 2.9: Two examples of valence bond solid states. In both cases, the highlighted bonds depict
spin singlets. In the left figure, there is “columnar” order, where the singlets are formed in the
horizontal direction. In the right, an example of a “plaquette” order is shown, where there is a
mix between horizontal and vertical singlets. Image from [4].

This challenges the LGW paradigm, if a continuous transition arises between the two

ordered phases. The expected, as shown in Fig 2.4, is a first-order phase transition,

or an intermediary VBS-Néel state. This can be proven by constructing an action

SLGW[n, VBS]. A similar phenomenology would be found as the simple SLGW[ 1, 2]

in Sec. 2.2. With the monopole constraints in operators involving  VBS, the picture

is less clear. To clarify those results, it is useful to use a di↵erent theory. Let us

decompose the Néel vector in what are known as bosonic spinons :

na(x) = z⇤
↵
(x)�a

↵�
z�(x) , (2.53)

where ↵, � = 1, 2 is summed over. This is known as the CP1 map, since it is spanned

by z due to the fact n
2 = 1 ! |z|2 ⌘ |z1|2 + |z2|2 = 1. This decomposition is

far from unique. There is an invariance under a local U(1) gauge transformation

z↵ ! ei✓(x)z↵. This shows that any local theory involving spinons must be a gauge

theory, that is, a gauge field must be introduced to enforce this symmetry and take

care of the redundancy in writing the spinons. We can show that the partition

function in eq. (2.40) can be rewritten as [57, 58]:

Z0 =

Z

|z|2=1

DaDz exp

✓
�1

g

Z
d3x |(r� ia)z|2

◆
. (2.54)

This can be proven by “integrating” out over the dummy variable a, reducing to solve

its equation of motion from the action, holding a = i(z⇤
↵
rz↵ � complex conjugate).

By then substituting back this expression, one can reduce to the original non-linear
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sigma model action. a indeed transforms as a U(1) gauge field: a! a+r✓.

Note the presence of a topological current j = r⇥ a (remember here that r is

a spacetime gradient). Violations of the conservation equation, r · j 6= 0, indicates

the presence of singularities in the gauge field. However, does that correspond to

physical configurations? Consider the charge Q, which corresponds to the flux of

the gauge field:

Q =
1

2⇡

Z
d2x(r⇥ a)⌧ =

1

2⇡

Z
d2x(@xay � @yax) , (2.55)

which is gauge invariant, and it does correspond to the skyrmion charge.

The monopole physics enters in this gauge theory as actual monopoles for the

gauge field a. A �Q = ±1 flux violation corresponds to (r⇥ a)⌧ ! (r⇥ a)⌧ +2⇡.

This means that in the path integral, the flux is only defined modulo 2⇡, referred

to as a compact U(1) gauge field [59].

We will now deform the action describing eq. (2.54), in hope of describing a

transition away from the Néel state. Consider the lagrangian:

L = |(r� ia)z|2 + r(|z|2) + u(|z|2)2 + Lm �
1

e2

X

⇤
W⇤ , (2.56)

where the constraint |z|2 = 1 was softened, using again the “high-energy” completion

trick to write down a potential for the bosonic spinon field z↵, and introduced some

dynamics for the gauge field, in terms of Wilson lines, defined as:

W⇤ = exp

✓
i

I

⇤
dx · a

◆
, (2.57)

where ⇤ are elementary plaquettes on spacetime. This is the standard procedure in

order to define gauge fields dynamics on a lattice [60]. Regularizing space-time as a

cubic lattice with spacing 1,

X

⇤
W⇤ =

1

2

X

a,b=⌧,x,y

cos (@aab � @baa) =
X

b=⌧,x,y

cos [(r⇥ a)
b
] , (2.58)
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where constants were ignored in the last equality. Note that, due to compactness,

the kinetic term for the U(1) gauge field must be 2⇡ periodic.

The Néel phase now corresponds to condensing the spinon field hz↵i 6= 0 6. If

monopole operators are absent in the action, the Q charge is conserved, and there is

an emergent U(1)T symmetry. The gauge field is now non-compact, and eq. (2.58)

can now be safely expanded, generating a (r⇥ a)2 term in the lagrangian, which is

the usual Maxwell action for electrodynamics. Expanding and writing eq. (2.56) in

this approximation:

LDQC ⌘ |(r� ia)z|2 + r⇤(|z|2) + u(|z|2)2 + 1

2e2
(r⇥ a)2 . (2.59)

Straightforward quantization of the gauge field gives rise to photon-like gapless

mode! Indeed, as argued below, the above action does describe the phase transition

between the Néel-VBS states. r = r⇤ is tuned in order to have a scale-invariant

critical point. The spinon field has charge 1 under the gauge field, and transforms

as a spinor under the SU(2) symmetry: It carries a spin 1/2 degree of freedom.

This is not expected for any excitation in the LGW expansion: The Néel vector n

transforms as a vector, which is a spin 1 representation. As eq. (2.53) suggests,

the Néel vector excitations are described by a pair of spinons. This means that at

criticality, there is fractionalization: Even if physical states must have integer spin,

the excitations are said to be fractionalized if they can separated in half-integer spin

particles.

Notice that the spinons are charged under a gauge field and therefore feel a

force between then. This is where the non-compactness argument becomes impor-

tant: For compact gauge fields, Polyakov [59] showed that instantons (monopole

e↵ects) in and dominate the spectrum of the theory, resulting in confinement. At

low energy, charges are bound together, and there is an energy cost proportional to

the distance separating them. This is what happens in the confined phase of quan-

tum chromodynamics where the low-energy excitations are mesons, bound states

of quarks interacting with gluons, and this also should happen in the VBS phase,

6Some words of caution on terminology and “condensing” operators: Both the monopole and
spinon operators are charged under the U(1) gauge field, and, therefore, are not gauge invariant.
In order to construct gauge-invariant states of such excitations, it is necessary to add Wilson
lines ei

R
a. In the condensed matter literature, such Wilson lines are omitted, however they are

important if Chern-Simmons terms are present [61,62]. We will proceed without adding the Wilson
lines, which are not important otherwise, following the usual discussion of the Anderson-Higgs
mechanism [63].
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identified as monopole condensation. In a deconfined phase of a gauge theory, there

is a fixed energy cost to separate charges, independent of the distance. This is what

happens in the usual quantum electrodynamics of electrons and photons.

In the Néel phase, the condensation of the spinon field means that, due to

the Anderson-Higgs mechanism [49], the photon adquires a mass. To see why, in

eq. (2.59), just replace z = z0 = const, the previous kinetic term generates a

term ⇠ |z0|2a2, which is the mass term for vector fields. Therefore, in the gauge

field language, the Néel phase corresponds to the Higgs phase, the VBS is the

confined phase, while right at the critical point there is deconfinement of excitations.

Hence, the transition is dubbed as deconfined quantum criticality (DQC). In the

confined/Higgs phases, there are LGW-allowed excitations, which break down at

the critical point.

However, it is still necessary to show some evidence that eq. (2.56) does in fact

flow to a fixed point of the form of eq. (2.59), rendering monopoles irrelevant in the

process. There are a number of di↵erent arguments: One is from the analysis of the

Sachdev-Jalabert (SJ) model, a lattice regularization of a CPN�1 model with Berry

phase e↵ects [64]. The large-N and the N = 1 cases agree concerning the existence

of a critical point with deconfined excitations [15]. We will take a di↵erent route.

We will break the full spin rotation symmetry to a U(1) subgroup, while main-

taining other symmetries. In the lattice, this means the presence of anisotropic

interactions such as �z

i
�z

j
. In the NL�M action, this amounts to adding a term such

as Lw = w(nz)2, with w < 0. The resulting CP1 action is then written as:

Le.p = |(r� ia)z|2 + w(|z1|2 � |z2|2)2 + Lm , (2.60)

where the constraint |z|2 = 1 is considered exactly in the partition function, and

the �4 monopole operators are added. The resulting Néel order has “easy-plane

anisotropy”: by ordering hz↵i 6= 0, energetically favored |hz1i| = |hz2i| states means

that only n± = nx ± iny orders, while nz = 0. By combining |z1|2 � |z2|2 ' 0 and

|z1|2 + |z2|2 = 1, we conclude that low energy spinon fields have fixed magnitude,

|z0| = const.. Therefore, we introduce a phase field '↵(x):

z↵(x) ⇠
|z0|p
2
exp[i'↵(x)] , (2.61)
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where the phase field is defined modulo 2⇡, that is, one can interpret its existence as

two NL�M with a circle as the target manifold, ⌃ = S1. The lagrangian is written

as:

Le.p ⇠
|z0|2
2

(r'� a)2 + Lm , (2.62)

where ' = ('1,'2) was defined. The components of the Néel vector in plane are

written as:

n± ⇠ |z0|
2

exp[±i('2 � '1)] , (2.63)

and there is no Skyrmion number in this case. The topological charge which can be

defined is the winding numbers of the phases:

q↵ =
1

2⇡

I
dx ·r'↵ ; ↵ = 1, 2 , (2.64)

defined on closed curves on each (imaginary-)timeslice. However, in the easy plane

case, the gauge field flux only couples to the sum of the charges:

q1 + q2 =
1

2⇡

I
dx ·r('1 + '2) =

1

2⇡

I
dx · a =

1

2⇡

I
d2
x · (r⇥ a) , (2.65)

which can be seen from the equations of motion for the gauge field in eq.(2.62).

Monopole operators cannot be ignored, which can be seen from the above equation:

By taking a space-like surface in the last equality, they create vortices /anti-vortices

in the phase field, and, therefore, n±. Physically, a 2⇡ vortex in the '1 field ('1 !
'1 + 2⇡) is the same as an antivortex in the '2 field ('2 ! '2 � 2⇡), since they

appear in opposite signs in the argument of eq. (2.63). Note also that we can define

“meron” fields which shift the phase angles by ⇡. Let  1,2 be the field creating

each of the merons, that is, by acting on a semiclassical state, '1,2

 
⇤
1,2��! '1,2 + ⇡.

Therefore, one can construct a monopole, manifested as a vortex creation operator,

as:

M† ⇠ ei⇡/4 ⇤
VBS ⇠  ⇤

1 2 . (2.66)
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This identity can be proven also by consistency of symmetry principles in the

meron field [15,65]. Suppose now w negative, but small. Acting with  1, the vortex

core will have nz < 0, and for  2, nz > 0, as each z1, z2 must vanish near the core.

Therefore, the meron field charge corresponds to the easy-plane U(1) charge. We

are now ready to make a change of variables in our description. We write, by again

softnening the |z|2 = 1 constraint in a potential:

Le.p = |(r� ia)z|2 + V (z1, z2) + Lm , (2.67)

where the potential is of the form V (z1, z2) = r|z|2 + u(|z|2)2 +w0|z1|2|z2|2. In 2 + 1

dimensions, there is a duality between bosonic “particle” operators (such as z1,2),

charged under a gauge field with flux creation operators ( 1,2), known as particle-

vortex duality [61,66–68]: It states that given an action for the particle operator, in

our case given by Le.p, there is a dual action describing  1,2, however coupled to a

distinct U(1) non-compact gauge field. For the case in question, we have:

L̃e.p = |(r� ib) |2 + Ṽ ( 1, 2) +
1

2e2
v

(r⇥ b)2 + Lm , (2.68)

where Ṽ ( 1, 2) = rv| |2 + uv(| |2)2 + w0
v
| 1|2| 2|2 is the potential for the meron

fields. The monopole lagrangian is now local, by substituting eq. (2.66) in eq.

(2.46):

Lm = �4
⇥
( ⇤

1 2)
4 + ( ⇤

2 1)
4
⇤
. (2.69)

There is an overall U(1) gauge symmetry, with the standard action  1,2 ! ei✓(x) 1,2,

and b ! b + r✓. The corresponding current is j = r ⇥ b. In fact, this is a

manifestation of the global U(1) spin symmetry in Le.p., since it is dual to the

spin current z†(r � ia)z. However, there is a distinct global U(1)T symmetry for

�4 = 0, ↵ ! e�i(�1)↵⇢ ↵, where ⇢ 2 mathbbR, corresponding to the conservation of

the “skyrmion number”, now associated with the total winding number:

Q =

Z
d2x  †�z = q1 � (�q2) , (2.70)

where the extra minus sign from q2 comes from the fact that monopoles are created
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with a  2 anti-particle. Indeed, for �4 6= 0, this symmetry is broken down to Z4,

due to Berry phase e↵ects. In this description, if:

h 1,2i 6= 0 , (2.71)

due to the Anderson-Higgs, the gauge field b is gapped. This corresponds to the Néel

phase, since U(1) spin symmetry is the gauge symmetry. However, if the composite

monopole operator is relevant, we have a paramagnet phase, equivalent to the VBS

phase:

h VBSi ⇠ h ⇤
1 2i 6= 0 . (2.72)

This is indeed the phenomenology found in the original CP1 model, however

with the role of monopoles as a correction to the potential breaking the U(1)T
symmetry. It can be further argued, as done in Appendix C of [15], that indeed, the

scaling dimension of the monopole operator is irrelevant at the transition between

those two regimes. Therefore, Lm can be safely discarded, and by again invoking

this duality, eq. (2.59) is a good description, at least in the easy-plane anisotropic

limit.

For the isotropic case, numerical Monte-Carlo results do suggest that by for-

bidding monopoles in the partition function of the NL�M in eq.(2.40), a continuous

phase transition emerges with some evidence of a gapless photon [69, 70]. Numer-

ical evidence for this transition also shows a diverging correlation length [71, 72].

After this first incarnation, deconfined quantum criticality is now a umbrella term

for exotic, continuous phase transitions without order parameter excitations at low

energies, where several examples were found [73–76]. See [16] for a review of some

of such transitions.

In the next chapter, we will discuss the physics of spin chains. First, some extra

field theoretic tools in 1+1 dimensions are reviewed, such as the restraining dynamics

of two dimensional conformal field theories and bosonization. After doing so, we will

also review continuous transitions between symmetry-broken phases found in spin

chains.



Chapter 3

Tools and examples in one dimension

As commonly is the case in physics, problems get easier as dimensions are lowered.

In this chapter, we will explore some extra properties of conformal field theories

in 1 + 1 dimensions, which can be classified by a number known as central charge.

As a consequence, we will also comment on the equivalence of fermions and bosons

which occur, including how to map bosonic to fermionic operators and virse versa.

Examples will be provided, commenting on the connection to the LGW paradigm

and/or the deconfined quantum criticality phenomenology.

The discussion on conformal field theory is based on [17,41,51]. The conventions

used with dual bosons are similar to the expressions in [77] in the thermodynamic

limit. The field-theoretic perspective discussion on bosonization is based on [78].

Both the transverse field Ising model and the XY chain are treated with considerable

detail in [18], while the discussion of the phases and transitions of the J1 � J2 XYZ

chain is based on [5].

3.1 Conformal Field Theory in two dimensions

and bosonization

As presented in the last chapter, the way to fully characterize CFTs are by comput-

ing scaling dimensions and the structure constants. We will now show that, in two

spacetime dimensions, there are two numbers which can classify degrees of freedom

in a CFT. This will be useful to classify phase transitions in lattice models.

Consider the two-dimensional plane spanned by two coordinates (x1, x2), and

53



CHAPTER 3. TOOLS AND EXAMPLES IN ONE DIMENSION 54

define the complex coordinates z = x1 + ix2 and z̄ = x1 � ix2. Assume that a CFT

has an action given by S0. Classically, due to Noether’s theorem [41], it is known

that every symmetry corresponds to a conservation of a corresponding spacetime

current. Since the conformal group is constructed from spacetime symmetries, we

introduce the energy-momentum tensor. If x ! x + ✏(x) is some infinitesimal

transformation, T ab represents the corresponding change in degrees of freedom:

�S0 ⌘ �
1

2⇡

Z
d2x T ab@a✏b =

1

2⇡

Z
d2x @aT

ab✏b , (3.1)

where a, b = 1, 2. To each of the subgroups of the conformal group, one can evalu-

ate the symmetry consequences of the energy-momentum tensor. Invariance under

translations and rotations implies that T ab is symmetric and conserved. Further-

more, scale invariance imposes that it is also traceless. In complex coordinates, this

basically means that it decomposes into holomorphic and antiholomorphic parts:

Tzz(z, z̄)! T (z) ; Tz̄z̄(z, z̄)! T̄ (z̄) , (3.2)

and Tzz̄ = Tz̄z = 0. By the use of Ward identities 1, one can show that these features

follow to the quantum case (that is, when the energy-momentum tensor is probed

inside correlation functions) with the exception of the traceless condition in curved

manifolds [17]: If R is the curvature of some two-dimensional Riemannian manifold,

htrT i = hT a

a
i = c

24⇡
R , (3.3)

where c is known as the central charge, and is a property of the conformal field

theory. It is also noted as conformal anomaly, since it indicates a quantum violation

of scale symmetry in curved space. What is non-trivial is that it is also related to

the number of degrees of freedom of the system, even in flat spacetime. In fact,

for example, if the theory is defined on R ⇥ S1 (a cylinder, and the manifold in

which we are most interested, since ⌧ , the imaginary time, is periodic), the leading

contribution to the ground state energy, if L is the length of the periodic direction,

and we set the velocity of propagation to v = 1, is given as:

1Ward identities basically state that if there is a classical Noether-type conservation equation
r · j = 0, in the quantum theory it is manifested in correlation functions, as hr · j · · · i = 0, where
· · · indicates other operators of the theory. Violations of the Ward indenties are known as quantum
anomalies.
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Egnd = � ⇡c
6L

. (3.4)

Since diagonal components of the stress-energy tensor can be interpreted as energy

density, it is perhaps unsurprising that the central charge can be computed as the

coe�cient for the TT correlator:

hT (z)T (0)i = c/2

z4
; hT̄ (z̄)T̄ (0)i = c/2

z̄4
. (3.5)

The central charge depends on the short-distance content of the theory, and cannot

be fixed only by symmetries. However, an important property is that the central

charge is additive: If one consider two CFTs described by S(1)
0 and S(2)

0 , with central

charges c1 and c2, say, by computing the above correlator, it easy to see that if one

consider S0 = S(1)
0 +S(2)

0 (two decoupled CFTs), the total central charge is given as:

c = c1 + c2.

At first sight, this procedure may seem not very useful in classifying CFTs:

If one constructs, for example, a c = 0.548 CFT, how to really distinguish its

physics to a c = 0.549 one? Universality saves the day: Recall that the main

appeal of RG fixed points is the fact that di↵erent lattice systems may flow to the

same universality class at the transition at low energies. Thus, one may not expect

a continuous spectrum of central charges to classify conformal field theories which

happens at phase transitions. Indeed that is the case, and physical phase transitions

are described by minimal models, where conformal charges are rational.

For our discussion, we will only need two examples: c = 1 and c = 1/2. The

former was already mentioned in the last chapter, albeit in two dimensions, it is the

free boson:

S(1)
0 =

1

2

Z
d2x (r�)2 . (3.6)

When fully endowed with the U(1) shift symmetry, where � ! � + const, this was

referred to as the Gaussian fixed point. Note that two-point correlation functions

in eq. (2.29) are singular for d ! 2. This is due to the Mermim-Wagner theorem,

which states that infrared correlation functions of “Goldstone bosons” (for the U(1)

case, equivalent to bosons with shift symmetry ) are divergent at long distances.
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Indeed, a careful computation removing a short distance singularity shows that

h�(x)�(y)i ⇠ � ln |x�y|2: There is no finite physical result in the infrared! This is

due to the fact the shift symmetry implies that � is not a physical operator of the

theory, since its value is arbritary. Note however, this is not the case for the current

j(x) = r�(x), which is well-defined. Further operators are constructed by adding

higher order derivatives, etc. For example, the holomorphic part of the energy-

momentum tensor is written as T (z) = �(@z�)2/2. With proper normalization, the

TT correlator yields unit central charge. There are also special operators dubbed

vertex operators :

V↵ (x) = exp [i↵'(x)] , (3.7)

if � ! � + a, V↵ = ei↵� ! ei↵aV↵. This implies that correlation functions must

be ”charge-neutral” to respect this symmetry: That is, hV↵1 · · ·V↵ni 6= 0 only if
P

i
↵i = 0. By looking at the two-point correlations, one concludes that they are

indeed scaling operators which can be classified by |↵| (expression shown in App.

B):

hV↵ (x)V�↵ (y)i ⇠
1

|x� y|↵2/2⇡
, (3.8)

and, therefore, will flow non-trivally if added in the action. For our purposes, we

will consider compact bosons, that is:

�(x) 2 R! '(x) 2 [0, R) ' S1 , (3.9)

as the phase field in the easy-plane Néel phase studied in the last chapter. In this

case, we define some R such that only ' mod R corresponds to physical configu-

rations. Note that the compactification restricts the well-defined operators of the

theory, since they must be invariant under '! ' + R. This means that there is a

discrete spectrum of vertex operators:

Vn (x) = exp


i
2⇡n

R
'(x)

�
; n = 0, 1, · · · , (3.10)

Those operators will play a big role in constructing symmetry-breaking phases in
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one dimension.

We are using the terms bosonic and scalar fields interchangeably: In the LGW

field theories, the scalar field, which represents the continuum limit of order param-

eters, must carry integer spin, as explained for the Néel case. Bosons, in quantum

mechanics, are defined as integer spin particles which are symmetric under exchange,

and therefore the definitions match. We will now consider fermionic fields, mani-

fested as spinors.

As shown by Dirac, there is a way to construct relativistic fermions by “taking

the square root” of the relativistic boson [49]. We will take a di↵erent route, since we

want to define fermions in a euclidean action, and the original derivation concerns

the invariance of the full Lorentz group. Here the structure is simpler. Consider the

operator:

�r2 = �@2
⌧
� @2

x
, (3.11)

where ⌧ = x1, x = x2. Note that S(1)
0 = 1/2

R
�(�r2)�. Now, define a set of

matrices � = (�1, �2) such that:

{�a, �b} = 2�ab , (3.12)

therefore, (� ·r)2 = �r2. Our case of interest, as highlighted in the next sections,

is the case where this algebra is realized by 2⇥ 2 matrices. In fact, we can just take

the Pauli matrices �1 = �x and �2 = �i�y. We can define then two-dimensional

Dirac fermions, as two component fields:

 (x) ⌘
 
 L(x)

 R(x)

!
. (3.13)

(not to be confused by the previous instances of the letter  , where it was used

to denote scalar fields) We define then the Dirac action, by also defining the Dirac

adjoint  ̄ =  †�1:

S(D)
0 = i

Z
d2x  ̄(� ·r) . (3.14)
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We will later show that those fermions arise in lattice models at long distances.

However, we need to be more specific to construct a partition function. Dirac

fermions are complex, which means  †
↵
6=  ↵, and they anticommute, that is  †

↵
 � =

� � †
↵
, where each field is evaluated on a di↵erent point. This property allows to

construct a proper anti-symmetric fermionic Hilbert Space. Again omitting the

details of the stress tensor and its correlation, it can be shown that c(D) = 1. That

is the same result as the free boson! In this theory, the two point correlation is

written as:

h †
L
(x) L(x

0)i ⇠ � 1

(⌧ � ⌧ 0) + i(x� x0)
, (3.15)

h †
R
(x) R(x

0)i ⇠ � 1

(⌧ � ⌧ 0)� i(x� x0)
, (3.16)

clearly di↵erent from the logarithmically divergent correlations of free bosons. If

central charges indeed provide a classification of CFTs, it is necessary to have some

operator in the free boson theory on which the fermionic fields are mapped. This is

known as bosonization. One may ask also about symmetries, which apparently do

not match: A free fermion has a U(1)R ⇥ U(1)L ' U(1)V ⇥ U(1)A symmetry, cor-

responding to the conservation of the current of the right and left moving fermions.

They can be written as the axial and vector currents:

jV =  ̄� ; QV =

Z
dx ( †

R
 R +  †

L
 L) , (3.17)

jA =  ̄��3 ; QV =

Z
dx ( †

R
 R �  †

L
 L) , (3.18)

where �3 = �1�2. Their separate conservation law has a physical meaning, already

manifested in the correlation functions: One can interpret massless Dirac fermions

as two propagating “left-moving” and “right-moving” fermions. We now consider a

compact boson. The shift symmetry, denoted as U(1)s, is manifested as the current

js = r'. However, there is an extra U(1)w symmetry, of topological nature. Its

current is given as:

jw ⌘
1

R
ẑ ⇥r' , (3.19)
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that is, it corresponds to the “winding” of the boson, as the charge is Qw =R
dx j0

w
/R =

R
dx@x'/R 2 Z. Indeed it is topological in nature, as was the case for

the Skyrmion number and the vortex winding. The quantization works if we take

periodic boundary conditions in the spatial direction, '(�L/2) = '(L/2), e↵ectively

putting the system on a torus T2 = S1 ⇥ S1 (remember that the time direction is

always periodic). If one is interested only in local processes, choosing '(±1) = 0

will make this charge vanish. However, for singular configurations where there is

winding, this expression can be non-trivial. Naturally we now have a U(1)s⇥U(1)w
symmetry. We can then conjecture that fermions and bosons in 1 + 1 dimensions

are equivalent descriptions in the torus, where currents (jV , jA) match to (js, jw).

Indeed, we will show that is the case and construct the operators that map the

fermion fields into the bosonic theory. Before doing so, it is useful to rewrite the

compactified boson theory. The partition function of a compact boson is given as:

Z(B)
0 =

Z

' mod R

D' exp

⇢
�K

2

Z
d2x

⇥
(@⌧')

2 + (@x')
2
⇤�

. (3.20)

where we have introduced an extra parameter K. We will use the following identity

of gaussian integrals:

e�b
2
/2a =

Z 1

�1
dx e�

a
2x

2�ibx , (3.21)

to rewrite:

exp


�K

2

Z
d2x (@⌧')

2

�
=

Z
D(@x✓) exp

⇢
�
Z

d2x


1

2K
(@x✓)

2 � i@x✓@⌧'

��
,

(3.22)

renaming D(@x✓)! D✓, the partition function is rewritten as:

Z(B)
0 =

Z

' mod R

D'

Z

✓ mod R

D✓ exp

⇢
�
Z

d2x


1

2K
(@x✓)

2 +
K

2
(@x')

2 � i@x✓@⌧'

��
.

(3.23)

Note that we have imposed R�periodicity in the field ✓ = ✓(x). This is due to the
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fact one can further integrate in the ' field, by exchanging the @x and @⌧ derivatives

in the last term to arrive at:

Z(B)
0 =

Z

✓ mod R

D✓ exp

⇢
� 1

2K

Z
d2x

⇥
(@⌧✓)

2 + (@x✓)
2
⇤�

, (3.24)

which is the same as the original theory with K ! K�1 ! This is what is sometimes

called T�duality. ✓ must be compact to hold the same vertex operator spectrum as

the original theory. ✓ and ' are known as dual bosons. The corresponding currents

are, in fact, exchanged:

j
✓

s
⌘ r✓ $ j

'

w
⌘ 1

R
ẑ ⇥r' , (3.25)

j
✓

w
⌘ 1

R
ẑ ⇥r✓ $ j

'

s
⌘ r' . (3.26)

The physical interpretation is that bosonic particles in one side of the duality

correspond to winding modes in the another side of the duality. In fact, ✓ is related to

the canonical momentum of '. It will be useful to discuss a hamiltonian formulation,

since, in one dimension, one can generally derive the continuum dynamics directly

from some low-energy approximation in the lattice hamiltonian. The K-parameter

theory is known as a Luttinger liquid [79]. Consider the action in eq. (3.23), defined

in real time:

SLL ⌘
Z

dtdx


� 1

2K
(@x✓)

2 � K

2
(@x')

2 + @x✓@t'

�
, (3.27)

the canonical momentum to ' is ⇧' = @LLL/@('̇) = @x✓. A hamiltonian in a

time-slice is then constructed from a density HLL =
R
dx HLL, where:

HLL = ⇧'@t'� LLL =
1

2K
(@x✓)

2 +
K

2
(@x')

2 . (3.28)

Canonical quantization, an alternative to a path integral formulation of ',⇧' is

given by the operators satisfying ['(x),⇧'(y)] = i�(x � y). Then, since one can

write:
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✓(x) =

Z
x

�1
dy ⇧'(y) , (3.29)

one may then impose:

['(x), ✓(y)] = iH(x� y) , (3.30)

where H is the Heaviside theta function. This gives a “topological” interpretation

for the dual fields: If x > y, the non-commutativity reflects a non-local correlation

between the fields. For general K, the Luttinger liquid has two types of physical

vertex operators:

V↵(x) = exp [i↵ '(x)] , (3.31)

Ṽ�(x) = exp [i� ✓(x)] , (3.32)

where both ↵, � are quantized as integer multiples of 2⇡/R. The Ṽ operators are

then charged with the shift symmetry for the dual boson ✓/winding symmetry of

'. Furthermore, correlations have a K�dependence on the exponents, modifying

eq.(3.8), see App. B:

hV↵(x)V�↵(y)i ⇠
1

|x� y|↵2/2⇡K
, (3.33)

hṼ�(x)Ṽ��(y)i ⇠
1

|x� y|�2K/2⇡
. (3.34)

We now present the main result: Since the dual bosons are compact, the K

parameter can be used to redefine the compactification radius to
p
KR. At K = 1,

we introduce the fermion fields as:

 L,R(x) ⇠
1p
2⇡

exp[�i
p
⇡(✓ ⌥ ')] , (3.35)

where we have chosen R = 2
p
⇡. The proof for this equation requires constructing

the Hilbert space for the free bosons and fermions, computing the corresponding
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spectrum, and showing that, in both cases, the states can be mapped to each other

if a (more complicated version of) the above equation is identified. Since we are

dealing with spinless fermions and long-distance physics, such details do not matter

much and are well described in [77, 80]. To get a physical interpretation of this

result, one can identify fermionic excitations as soliton configurations in 1 + 1, as

explained in an example in the last section.

Also, since both theories are free, one can directly check by computing both

partition functions on a torus, that the result indeed agree with each other, Z(B)
0 =

Z(D)
0 [17]. We will refer to the mapping in eq. (3.35) as bosonization. Operators

can be mapped from one side to another, and the following dictionary will be used

in the rest of this thesis:

⇢L =  †
L
 L ⇠

1

2
p
⇡
(@x'+ @x✓) , (3.36)

⇢R =  †
R
 R ⇠

1

2
p
⇡
(@x'� @x✓) , (3.37)

 †
R
 L ⇠

1

2⇡
exp(�i

p
4⇡') , (3.38)

 L R ⇠
1

2⇡
exp(�i

p
4⇡✓) . (3.39)

Note that the last two operators are identified with vertex operators in the bosonic

theory. Furthermore, if we refer to the symmetry of the free boson as the winding

symmetries of each dual boson as U(1)' ⇥ U(1)✓ (think of the action in the form

written in eq. (3.27)), one can see that the vector and axial currents of the fermions

indeed map to the winding currents of ' and ✓, respectively. Remember that the

gapped phases can be obtained by perturbing fixed points. The ideia and usufulness

of this duality is that we can perturb from the c = 1 fixed point in two di↵erent

ways. Therefore, perturbations which can be hard to analyze in one side may be

easy in another. This also will be shown in examples.

We will investigate a case where fermionic excitations arise in gapped phases in

spin chains, while discovering the c = 1/2 CFT. Consider again the transverse field

Ising model (TFIM), which we rewrite here:

HTFIM = �
X

i

�
�z

i
�z

i+1 + g �x

i

�
. (3.40)
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Now equipped with the LGW story, we have a proper starting point. For g ! 0,

the ground state must be two degenerate ferromagnetic states, eigenstates of the

classical Ising hamiltonian
P

i
�z

i
�z

i+1. For g ! 1, the spins are polarized in the x

direction, with a unique ground state. This is an ordered-disordered transition: In

the ferromagnetic phase, the symmetry Px : �y,z

i
! ��y,z

i
is broken, while preserved

in the polarized phase. Since P 2
x
= 1, we indeed are working with a Z2 symmetry.

As discussed in the last chapter, this is the Wilson-Fisher fixed point.

In one dimension, this problem can be solved exactly: There is a map from spin-

1/2 degrees of freedom to spinless fermions, similar to the bosonization mapping.

This is the Jordan-Wigner transformation:

�x

i
= 2c†

i
ci � 1 , (3.41)

�x,�
i
⌘ 1

2
(�z

i
+ i�y

i
) = Bici ; Bi = exp

 
i⇡

i�1X

j=1

c†
j
cj

!
, (3.42)

�x,+
i
⌘ 1

2
(�z

i
� i�y

i
) = Bic

†
i
, (3.43)

The intuition is as follows: Spinless fermions, on each site, can be in two states: |0i,
empty, and c†|0i = |1i, full. We can identify those as eigenstates of the �x operator,

�x|  i = �|  i and �x| !i = | !i, respectively. Then, the spin flip operators

(in this basis) �x,� and �x,+ now destroy/create fermionic particles, �x,� ⇠ c and

�x,+ ⇠ c†. However, since this is defined on the lattice, we need to be careful

about the operators and states. The fermionic operators must satisfy the already

foreshadowed fermionic algebra:

{ci, c†j} = �ij ; {ci, cj} = {c†
i
, c†

j
} = 0 (3.44)

(the fermion fields  L/R satisfy a similar version in the continuum). Thus, to con-

struct proper fermionic states out of the “bosonic” nature of spin states, we add the

non-local “string” operator Bi, involving a sequence of fermion operators in other

sites. It can be checked that the spin algebra in eq. (2.37) and eq. (3.44) are

satisfied concurrently.

Therefore, we rewrite the hamiltonian in terms of fermions, where periodic

boundary conditions are considered:
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HTFIM = �
X

i

h
(c†

i
� ci)(c

†
i+1 + ci+1) + 2g c†

i
ci � g

i
(3.45)

= �
X

i

h
c†
i
ci+1 + c†

i+1ci + (c†
i
c†
i+1 + ci+1ci) + 2g c†

i
ci
i
, (3.46)

where the g constant term is dropped out in the second line, since we are not

interested in the exact expression for the ground state energy, but excitations. This

is a “free fermion” hamiltonian, where all operators are quadratic. The terms in the

parentheses are called “pairing terms”, and are similar to the BCS pairing c†
i,"c

†
i,# +

h.c in superconductors. Indeed, a similar e↵ect occurs here. But, for pedagogical

purposes, let us drop such terms and call this simplified hamiltonian H̄TFIM. we

have:

H̄ = �
X

i

h
c†
i
ci+1 + c†

i+1ci + 2g c†
i
ci
i
. (3.47)

This is a tight-binding chain, where the fermions feel an on-site potential V0 = 2g,

and hop around nearest neighbors with an energy scale t = 1. Due to periodic bound-

ary conditions and translational invariance, we can introduce momentum modes:

cj =
1p
N

⇡/aX

k=�⇡/a

eikajck , (3.48)

By choosing a = 1, we have:

H̄ =
X

�⇡<k⇡

"̄(k) c†
k
ck , (3.49)

where "̄(k) = �2 cos(k) � 2g. Ground state properties are obtained by filling the

negative energy modes on this band. For g < 1, as depicted in Fig. 3.1, we have, at

two points k = ±kF , gapless excitations. This is very di↵erent from the expected

gapped domain walls, studied in Sec. 2.1. This already shows that the pairing terms

cannot be ignored. Before tackling the full problem, let us try to extract the low

energy degrees of freedom of eq. (3.49). By expanding "̄:
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"̄(k) ' ±vF (k ⌥ kF ) + · · · , (3.50)

where we have used that "̄(kF ) = 0, and vF = 2 sin(kF ). In the above equation,

we are expanding around both ±kF points. Therefore, both contributions must be

accounted in the hamiltonian:

H̄ '
⇡X

k=�⇡

vF (k � kF ) c
†
k
ck �

⇡X

k=�⇡

vF (k + kF ) c
†
k
ck (3.51)

'
X

k

vFk(c
†
k,R

ck,R � c†
k,L

ck,L) . (3.52)

In the last line, the momenta were redefined to �1 < k < 1, since only the k

modes which are relevant are near the ±kF points, and relabelled ck+kF ⇠ ck,L and

ck�kF ⇠ ck,R. As already implicit in the notation, this is a relativistic Dirac fermion:

In real space, one can take k ! �i@x as the quantum mechanical operator, and

define  L,R(x) as the Fourier transform of ck,L/R operators. We then get the Dirac

hamiltonian:

H̄ '
Z

dx ivF ( 
†
L
@x L �  †

R
@x R) =

Z
dx ivF 

†�3@x , (3.53)

which is the hamiltonian derived from the action in eq. (3.14). This means this

gapless phase of H̄ is the c = 1 CFT, which, by bosonization, is the gaussian fixed

point. We will show in the next section that there is a distinct quantum spin chain

with gaussian criticality.

Consider then again the pairing terms. In retrospect, a symmetry analysis

show that those terms need to be there. In eq. (3.47), there is a continuous U(1)

symmetry, corresponding to the conservation of the total fermion number N =
P

i
c†
i
ci, labelling the states counting how many fermions they are. At low energies,

this symmetry is promoted to a U(1)L ⇥ U(1)R symmetry. However, the original

HTFIM does not possess any continuous symmetry at the lattice. Indeed, the e↵ect

of the pairing term is breaking the U(1) down to a Z2 fermion parity symmetry,

which is the fermionic form of Px. The exact solution invokes what are known as

Majorana fermions :
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Figure 3.1: Linearization of the dispersion around ±kF . In blue, it is plotted "̄(k). In red, we
have the Dirac branches corresponding to left and right-moving fermions. This approximation
is justified, since all negative energy states are filled (depicted in light orange), and low-energy
fluctuations are well-approximated by considering only linear contributions at ±kF .

ci =
1

2
(ai + ibi) , (3.54)

where it can be shown that a†
i
= ai and b†

i
= bi, and both satisfy {ai, aj} = {bi, bj} =

2�ij, {ai, bj} = 0. They are also called “real fermions”, since particles and holes are

identified. The hamiltonian is then written as:

HTFIM = i
X

j

(aj+1bj + gbjaj) . (3.55)

Introducing momentum modes ak and bk by following eq. (3.48), the Brillouin zone

is cut by half: The “reality conditions” on the Majoranas impose a†
k
= a�k and

b†
k
= b�k. Defining ak = (�k,L+�k,R)/

p
2 and bk = (�k,L��k,R)/

p
2 and expanding

near a gapless point, we arrive at:

HTFIM '
Z

dx i [vF (�L@x�L � �R@x�R) +m�R�L] , (3.56)

where �R(x) and �L(x) are the Majorana fields in the continuum, and m / |g�1| is
a fermion mass: This generates a mass gap in the spectrum, which, due to relativistic

invariance, is of the form "(k) =
p
k2 +m2. At m = 0, we obtain a pair of massless

chiral Majorana fermions, which we claim is the CFT which describes the WF fixed

point in 1 + 1 dimensions.
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This is also known as the Ising CFT. There is no need to compute its central

charge: One can build two copies of chiral Majorana fermions from a chiral Dirac

pair by introducing  L/R = (�L/R+ i⇠L/R)/2, where � and ⇠ are Majorana fields. By

direct computation, eq. (3.53) reduces to the above equation withm = 0. Therefore,

by the addition property of the central charge, c(M) = c(D)/2 = 1/2.

The Ising CFT has interesting properties and operators. For example, even if

the lattice spin operators are non-local in terms of the fermions, the corresponding

scaling dimensions can, in fact, be computed. It is well-described by the LGW

paradigm: Even if the theory has a “fractionalized” description in terms of fermionic

degrees of freedom, it lives on an ordered-disordered phase transition.

3.2 Ordered-ordered transitions in one dimension

Due to the singular nature of quantum phases in one dimension, it is maybe un-

surprising to find out that there are universal continuous phase transitions between

ordered phases. A canonical example is the XY chain:

HXY = �
X

i

(�y

i
�y

i+1 + J�z

i
�z

i+1) , (3.57)

taking J > 0. A straightforward analysis shows a y�ferromagnetic phase for

J ! 0 with h�y

i
i 6= 0, breaking Pz : �x,y

i
! ��x,y

i
and Px : �y,z

i
! ��y,z

i
, and

a z�ferromagnetic phase, at J !1 with h�z

i
i 6= 0, breaking Py : �

x,z

i
! ��x,z

i
and

Px : �y,z

i
! ��y,z

i
. Both phases break time reversal. By the LGW analysis, this

falls into the two-order parameter example with a Z2 ⇥ Z2 group structure, since

Pz = PxPy. Henceforth, it predicts a first-order transition generically. This model

can also be solved exactly with the Jordan-Wigner transformation and Majorana

fermions. We will only be interested in the physics near the transition. By doing

the same steps as the TFIM, the corresponding fermionic hamiltonian is written as:

HXY = �
X

i

h
(J + 1)(c†

i
ci+1 + c†

i+1ci) + (J � 1)(c†
i
c†
i+1 + ci+1ci)

i
, (3.58)

For J = 1, the pairing terms disappear and we have the same model as eq. (3.47)

with g = 0. The low energy limit is identical, and we have gapless Dirac fermions
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at ±kF = ±⇡/2. To compute the e↵ect of the pairing term at the transition, there

is a standard trick to construct low-energy operators from the lattice expression: In

eq. (3.48), all momenta in the Brillouin zone contribute equally. However, since the

Dirac modes  L/R dominate at low energies, one may consider the contributions at

k = ±kF . In real space, this means:

cj ⇠ eikF xj R(xj) + e�ikF xj L(xj) . (3.59)

Therefore, in the continuum, there is an induced pairing between right and left-

moving fermions:

HXY '
Z

dx
h
ivF 

†�z@x + i�
⇣
 †
R
 †
L
�  L R

⌘i
, (3.60)

where � / (J � 1) sin kF and vF / (J + 1) sin kF . By taking � < 0 or � > 0,

the pairing generates a mass for the fermions, entering the gapped ordered phases.

Using bosonization clarifies the physical interpretation. In App. A, the Jordan-

Wigner transformation and bosonization formulas are combined to write the lattice

spin operators in terms of the compact bosons (', ✓) (ignoring oscillating terms

which are not relevant for this model):

�x

j
⇠ 2p

⇡
@x' (3.61)

�y

j
⇠ �

r
2

⇡
sin

p
⇡

✓
✓ �
p
⇡

4

◆�
(3.62)

�z

j
⇠
r

2

⇡
cos

p
⇡

✓
✓ �
p
⇡

4

◆�
. (3.63)

By using the bosonization dictionary, eq. (3.60) is rewritten as:

HXY '
Z

dx

⇢
vF
2

⇥
(@x✓)

2 + (@x')
2
⇤
� �

⇡
sin

⇣p
4⇡✓

⌘�
. (3.64)

The corresponding euclidean action can be obtained, by invoking T�duality to

remove the ' boson:
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SXY =

Z
d2x

hvF
2
(r✓)2 � g0 sin

⇣p
4⇡✓

⌘i
, (3.65)

where g0 = �/⇡ = (J � 1)/⇡. This action is of the form of a sine-gordon model [79],

and appear quite frequently in the long-distance physics of spin chains. In general,

one proceeds to also consider symmetry-allowed higher order vertex operators which

are not generated on the lattice, and then the renormalization group equations are

computed. Since sin
�p

4⇡✓
�
= (Ṽp

4⇡�h.c)/2i, the corresponding scaling dimension

can be read from eq. (3.8): (
p
4⇡)2/4⇡ = 1 < 2. Therefore, the first-order term in

the beta function is �(g) = g. In this example, the results agrees with the naive

expectation from a semiclassical analysis: Interpret �g0 sin
�p

4⇡✓
�
as a potential

for the compact boson. For g0 < 0, J < 1, the minima for ✓ 2 [0, 2
p
⇡) are ✓0 =

3
p
⇡/4, 7

p
⇡/4, which yields the y�ordered ferromagnetic phase h�yi 6= 0, h�zi = 0.

On the other hand, for g0 > 0, one has ✓0 =
p
⇡/4, 5

p
⇡/4, corresponding to the

z�ordered phase h�yi = 0, h�zi 6= 0. For � = 0, a continuous phase transition then

emerges, with central charge c = 1. We will refer to this transition as a FMy �FMz

transition. By changing the overall sign in eq. (3.57), both phases transform into

Néel antiferromagnetic phases in the y and z directions, breaking also translation

symmetry. The overall conclusion stays the same, and in the Neely �Neelz, there is

a Dirac cone in the spectrum.

Stating that this transition is beyond the LGW paradigm is premature, since

its stability must be proven to discard a fine-tuned transition. Fortunately, it was

recently shown that such transitions occur in much more general quantum spin

chains [5, 32, 33], both with field theory arguments and strong numerical evidence.

We can encapsulate the general form as the J1 � J2 XYZ spin chain :

HJ1�J2 XYZ =
X

l=1,2

X

j

Jl[�
x

j
�x

j+l
+�y�

y

j
�y

j+l
+�z�

z

j
�z

j+l
] , (3.66)

where J1, J2 are the energy scales for first and second neighbor interactions, respec-

tively. Using the tools that we have been developing, we will discuss the phases and

transitions which emerge in this model and how the DQC phenomenology emerges

in those models.

Let us state the phase diagram results. Let J = J2/J1, and take all parameters

J ,�y,�z as positive. The XYZ hamiltonian is recovered for J = 0, which has
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an exact solution using the Bethe ansatz [81]. The corresponding phase diagram is

shown at the �y ��z plane in Fig. 3.2: There are three Néel phases, pointing on

each of the three spin directions, depending on the dominant coupling in eq. (3.66).

It must be symmetric under �y and �z, since a spin rotation around the x�axis
can map each point to another. The transitions are all c = 1 with the emergent

U(1) ⇥ U(1) symmetry structure. However, at �y = �z = 1, this is promoted

to a SU(2) ⇥ SU(2) symmetry, described by the WZW theory of the Heisenberg

chain [82]. In all such transitions, a lattice spin rotation symmetry is “doubled”

to a larger emergent symmetry. This indeed already shows that the LGW-evading

conclusion in the XY chain is robust, corresponding to any of the Neel↵/Neel�
transitions.

Figure 3.2: Phase diagram of the J1 � J2 XYZ chain defined in eq.(3.66). The light blue planes
indicate the c = 1 transitions, with a U(1)⇥U(1) symmetry. At the isotropic point �y = �z = 1,
this is promoted to a SU(2)⇥ SU(2) symmetry. Image from [5].

More interesting is the case where second neighbor interactions are considered,

J > 0. For J � 1, in the rotationally symmetric limit where �y = �z = 1,

singlets are formed on every two sites, forming a dimerized phase, a one-dimensional

valence bond solid [31]. Away from this limit, the dimers may not be perfect singlets

anymore (not perfectly rotation-invariant), but are stable. In the phase diagram in

Fig. 3.2, the dimerized phase emerges near J ' 0.5. In the Neelx,y,z to VBS

transitions, there is a U(1)⇥U(1) c = 1 theory. This is quite special: A whole plane

in this phase diagram has a fully emergent continuous symmetry, since there is only

Z2 ⇥ Z2 in general. All transitions are indeed LGW-forbidden, being continuous at

the boundary of ordered phases.

We will sketch the field theory construction. Consider then the XYZ hamilto-
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nian, for J2 = 0:

HXYZ = J1
X

j

[��̃x

j
�̃x

j+1 ��y �̃
y

j
�̃y

j+1 +�z �
z

j
�z

j+1] , (3.67)

where we have defined �̃x,y

j
= (�1)j�x,y

j
. Consider now �z ⌧ �y. In the Jordan

Wigner transformation, we can consider the quantization axis on the z�direction,
where �z = 2c†

j
cj � 1, and the spin flip operators are �̃± = (�̃x ± i�̃y)/2.

The XYZ hamiltonian is then written as:

HXYZ = �J1
X

j

[(1 +�y)(c
†
i
ci+1 + c†

i+1ci) + (1��y)(c
†
i
c†
i+1 + ci+1ci)��z�

z

i
�z

i+1] .

(3.68)

The first two terms reduce to the XY chain with �y = J . The continuum limit

of the last term can be computed from the bosonized version of �z, adding the

contribution from the oscillating term:

�z

i
�z

i+1 ⇠
4

⇡
(@x')

2 � 4

⇡2
cos

⇣p
16⇡'

⌘
. (3.69)

The first term renormalizes the Gaussian part, and the second term is another

deformation to the fixed point. Writing HXYZ =
R
dx HXYZ, the corresponding

hamiltonian density is written:

HXYZ =
v

2

⇥
K(@x✓)

2 +K�1(@x')
2
⇤
� g0 sin

⇣p
4⇡✓

⌘
� �0 cos

⇣p
16⇡'

⌘
, (3.70)

where g0 / (�y � 1), and:

vK

2
' J1vF , (3.71)

v

2K
' J1

✓
vF +

8�z

⇡2

◆
, (3.72)

�0 = J1
4�z

⇡2
. (3.73)
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There are three order parameters:

h�x

j
i ⇠ (�1)j

D
sin

⇣p
⇡✓̃
⌘E

, (3.74)

h�y

j
i ⇠ (�1)j

D
cos

⇣p
⇡✓̃
⌘E

, (3.75)

h�z

j
i ⇠ (�1)j

D
cos

⇣p
4⇡'

⌘E
, (3.76)

where we have defined ✓̃ = �✓ +
p
⇡/4. The competition between deformations

coming from Ṽp
4⇡ and Vp

16⇡, with scaling dimensions 1/K, 4K respectively, gener-

ates all three Néel phases. For small �z, K  1, the �0 term is irrelevant, and there

is a Neelx/Neely phase transition due to the g0 term, which is relevant. However,

the K-parameter also flows in a Luttinger liquid. If one starts in the transition line

in �y = 1, there is a critical value of �z beyond which K ! 0 at long distances.

In this limit, �0 flows to positive values and the Neelz phase appears in the vacua

' = 0,
p
⇡/2. Since the same phenomenology must be found by perturbing the

Neelz/Neelx phase transition by switching �y $ �z, there is also a c = 1 transition

line in this case. Moreover, we find the special point where �y = �z = 1, which fixes

K = 1/2: For a spin-rotation symmetric ground state, h�x

i
�x

j
i = h�y

i
�y

j
i = h�z

i
�z

j
i.

Since hṼp
⇡(x)Ṽ�

p
⇡(0)i ⇠ |x|�1/(4K) and hVp

4⇡(x)V�
p
4⇡(0)i ⇠ |x|�K , equating the

exponents enforce the condition on the Luttinger parameter.

With suitable renormalizations, eq. (3.70) also can describe the physics for

J2 6= 0. To show this carefully, it is necessary to expand all four-fermion terms into

chiral fermions and then use the bosonization formulas, we will just state the results.

The second neighbor interactions renormalizes K, g0,�0 as:

1

2
�(vK) ' �J1

8

⇡2
J , (3.77)

1

2
�
⇣ v

K

⌘
' J1

8

⇡2
J , (3.78)

��0 ' �J1
4(�z + b)J

⇡2
. (3.79)

Where b is a non-universal coe�cient which depends on lattice details. The main

di↵erence from this equations is that now one can have �0 < 0. For su�cient large

J , K ! 0, and �0 becomes negative and large, while the g0 becomes irrelevant.



CHAPTER 3. TOOLS AND EXAMPLES IN ONE DIMENSION 73

This occurs generically, and kills o↵ all three Néel phases. The vacua correspond to

' =
p
⇡/4, 3

p
⇡/4. By expanding into bosonic operators, it can be shown that this

corresponds to the VBS phase, where:

(�1)jh�j · �j+1i ⇠
D
sin

⇣p
4⇡'

⌘E
6= 0 . (3.80)

The phase transition occurs in a plane in the phase diagram, and occurs also for

J1 < 0, where Neel↵ ! FM↵ [32]. It was numerically found to be described by the

U(1)⇥ U(1) c = 1 theory where g0,�0 = 0 written in eq. (3.70) [5, 33]. This is the

dimerized phase referred in Fig. 3.2. To investigate how this emergent symmetry

may arise, consider the Neelz/VBS transition. At low energies, each order parameter

is written in terms of chiral fermions bilinears (ignoring oscillating terms):

N(x) = (�1)j�z

j
⇠  †

R
 L(x) + h.c =  †�1 , (3.81)

D(x) = (�1)j�j · �j+1 ⇠ �i †
L
 R + h.c =  †�2 . (3.82)

Both order parameters behave as a mass term for the chiral fermions. Indeed,

interactions between chiral fermions in the hamiltonian are of the form Hint ⇠
D(x)N(x). Therefore, one can consider a trial mean-field hamiltonian given by:

HM.F = iv †�3@x +N(x)  †�2 +D(x)  †�1 . (3.83)

Notice that this procedure still mantains the U(1)V :  ! ei� symmetry of chiral

fermions, enhanced to the full U(1)V ⇥ U(1)A symmetry if N = D = 0, which

corresponds to the phase transition. Consider a regime deep into any of the two

phases, where N 6= 0 or D 6= 0. For concreteness, consider the dimer (VBS) phase.

The low energy states are such that D(x) = const.. Excitations corresponds to

deformations of '(x). Invoking the results of Sec. 2.1, we know that it must be

domain walls between the two degenerate VBS states. Jackiw and Rebbi solved the

two-dimensional Dirac equation with a domain wall mass term [83], and found that

there exist zero modes (i.e: Localized solutions with no energy cost) of the form:

 (x) = e�
R x
�1 dx0 D(x0) 0 , (3.84)
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for D(�1)! 0. Therefore, this domain wall can be considered as a Dirac fermion

wavepacket: Another manifestation of bosonization. Take the soliton to connect

'(�1) =
p
⇡/4 and '(1) = 3

p
⇡/4. Near the origin, '(0) '

p
⇡/2, nucleating

one of the degenerate Néel states, see Fig. 3.3. Similar behaviour occurs if a domain

wall is constructed in the Néel phase. This “dual description” is notoriously similar

to what we have found in the two-dimensional Néel/VBS transition: Defects of the

Néel phase (monopoles) host the order parameter of the VBS on their core. It also

works in the other way around: A careful analysis of a vortex constructed at the

boundary of the fourfold degenerate VBS phases nucleates a spinon [84].

Figure 3.3: Solitons/Domain walls deep in the VBS phase. As the field tunnels between degenerate
states, the order parameter of the Néel state is non-zero. Image adapted from [5].

In one dimension, there are a simpler incarnation of monopole operators, local in

the original variables. In this model, those can be constructed explicitly [5], alas

must be redefined for the Neelx,y/VBS transitions, since they involve pinning the

dual boson ✓ on a side of the transition, and ' in another. A unified description

is then complicated, since the dual bosons are the shift generators of each other.

Jiang and Motrunich [32] discussed this issue at length for the FMz/VBS transi-

tions, and discussed how to construct di↵erent e↵ective theories where the duality

is manifested.

In the next chapter, we will switch gears to discuss the role of time-reversal

symmetry in spin models, and construct a quasi-1D model realizing novel gapped

phases. All the properties discussed here, such as the emergent symmetries, decon-

fined transitions and the corresponding field theoretic discussion will appear in the

field theory treatment in Chapter 5.



Chapter 4

The zigzag chain and the chiral state

In this chapter, our focus will be on the construction of chiral phases, non-magnetic

time-reversal breaking in one dimension. First, we will present an exactly solvable

model with a exponentially degenerate ground state. In the second section, after

an interlude discussing the construction of chiral spin states, we show that there

is a class of deformations of the solvable model which generates a chiral spin state

as the ground state. We then conclude by showing that this phase is stable to

perturbations, and the corresponding excitations can condense to generate a distinct

symmetry-breaking phase.

In the first section, [6] is followed. The results in the second section were already

derived in [39], albeit using di↵erent methods. The last two sections constitute

original work.

4.1 Chiral Spin State

Time-reversal is, in some sense, a special symmetry. Consider a spin-1/2 degree

of freedom.Intuitively defined to be generated by
�Q

i
e�i

⇡
2 �

y
i
�
K, where K denotes

complex conjugation, it flips the sign of the spin operator in any basis. Its antiuni-

tary nature aided by the fact that the generator squares to �1 for a single spin, leads
to the Kramers theorem [85,86]: Let |Ei be a eigenstate with energy E constructed

from a T -invariant hamiltonian H. It follows not only that T |Ei is also an energy

E eigenstate, but also that hE|T |Ei = 0: The energy spectrum must then be at

least doubly degenerate.

75
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For a many-body spin systems, time-reversal breaking can be seen in the sim-

plest example of a doubly-degenerate ferromagnet: In order to split up the de-

generacy, the intuitive perturbation is a magnetic field, which breaks time-reversal

explicitly. Clearly all magnetic phases have this property, since h�ii 6= 0 breaks

T . However, one may ask if non-magnetic phases also realizes T -breaking. In a

two-dimensional square lattice, consider a spin hamiltonian which has SU(2) spin

symmetry, a lattice parity and time-reversal. Let us define the scalar spin chirality

operator on three lattice sites defined by i, j, k:

�ijk = �i · (�j ⇥ �k) . (4.1)

If probed on three spins of a square plaquette, one can see that this operator is

odd under a lattice inversion. Furthermore, it is odd under time-reversal, since it

involves an odd number of spins. However, it is a scalar under SU(2) spin rotations.

The given task is to find a hamiltonian with such symmetries, whose ground state

is simultaneously non-magnetic h�i = 0 and chiral h�i 6= 0. The construction given

by Wen et al. [6] is as follows: Consider first the following hamiltonian on the square

lattice:

H = J [(�1 + �2 + �3 + �4)
2 + (�5 + �6 + �7 + �8)

2 + · · · ] , (4.2)

for J > 0. Such exchange terms are spatially separated plaquettes, see Fig 4.1. The

above expression is then a sum of decoupled four spin hamiltonians, and therefore

can be solved exactly. The ground state on each plaquette are then singlets formed

from the four spins. It can be shown there are two degenerate ground states per

plaquette. One has then an exponential degeneracy of 2N/4 states, where N is the

number of spins on the lattice.

By construction, such states are also chirality eigenstates for any triangle de-

fined on the unit cell. That is, they can be labelled by {|�0i, | � �0i}, where

�0 = 2
p
3. One can then think of each plaquette as e↵ective Ising variables for

the chiralities. Thus, they can be coupled to construct a chiral state:

H 0 = �Q[�123�567 + �123�9,10,11 + · · · ] = �Q
X

hI,Ji

�I�J , (4.3)
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Figure 4.1: Shaded plaquettes indicating the four spin terms in the square lattice. Figure from [6].

where Q > 0 and I, J labels the triangular plaquettes. For H +H 0, the exponential

degeneracy is lifted, and we have a twofold degenerate ground state, spanned by:

⌦p|�0ip and ⌦p|� �0ip, where p labels each plaquette. This is the two dimensional

chiral spin state.

4.2 Kitaev tetrahedral Chain

We will introduce a one dimensional model, where our interest lies. This is a compass

model [87], where each bond on the chain has an Ising-like interaction �↵
i
�↵
j
in a

definite spin direction ↵

Htet =
X

↵=x,y,z

J↵
X

hiji↵

�↵
i
�↵
j
, (4.4)

where J↵ > 0, pictorially shown in Fig. 4.2. The geometry is coined as the tetrahe-

dral chain, since unit cells form a tetrahedral shape.

Let us list the symmetries present in this hamiltonian: There is time reversal

T : � ! ��, present in any Ising-type hamiltonian with bilinear interactions �↵
i
��
j
,

a lattice C2 rotation symmetry R : {�1,A $ �2,B ; �1,B $ �2,A ; j ! �j}, and
a set of spin ⇡ rotation symmetries which we will call Klein rotations K1 and K2,

since K1 ⇥K2 ' Z2 ⇥Z2, the Klein group. Acting on a unit cell, the explicit action

is given as:
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Figure 4.2: Figure of the tetrahedral chain, where the unit cell is highlighted, along with the four
sublattices (1, A), (2, A), (1, B), (2, B). A color scheme is adopted: black, green and blue bonds
corresponds to the presence of x, y, z Ising interactions, respectively.

K1 :

8
>>><

>>>:

�
�x

1,A, �
y

1,A, �
z

1,A

�
!

�
��x

1,A,��
y

1,A, �
z

1,A

�
�
�x

1,B, �
y

1,B, �
z

1,B

�
!

�
��x

1,B, �
y

1,B,��z

1,B

�
�
�x

2,A, �
y

2,A, �
z

2,A

�
!

�
�x

2,A,��
y

2,A,��z

2,A

�

�2,B ! �2,B

K2 :

8
>>><

>>>:

�1,A ! �1,A�
�x

1,B, �
y

1,B, �
z

1,B

�
!

�
�x

1,B,��
y

1,B,��z

1,B

�
�
�x

2,A, �
y

2,A, �
z

2,A

�
!

�
��x

2,A, �
y

2,A,��z

2,A

�
�
�x

2,B, �
y

2,B, �
z

2,B

�
!

�
��x

2,B,��
y

2,B, �
z

2,B

�

(4.5)

The idea behind this action is to construct spin rotations preserving each bilinear

on the bonds. Kimchi and Vishwanath [88] discussed this group in detail in the

context of Kitaev-Heisenberg model, where K acts as a duality, mixing Kitaev and

Heisenberg couplings. If the hamiltonian is defined on a finite general lattices, it

was found that the duality exists if the number of x, y and z bonds are all even or

odd. Indeed, it can be checked that the tetrahedral chain satisfies this condition.

Furthermore, in the choice of parameters where the Klein group becomes a symme-

try, it was conjectured that there might be a phase where it is spontaneously broken

down to Z2, without breaking any other symmetries.

Note the quantum nature of the ground state of eq. (4.4): Each bond favors a

di↵erent Ising direction, thus frustrating the spins on the lattice sites: For general

Jx,y,z, there is no clear semi-classical description. However, it is exactly solvable. In

the original paper, the authors introduced Jordan-Wigner fermions, in similar sprit

to what was done in the last chapter. We will adopt an alternative description,

where four Majorana flavors are introduced:
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�↵
j
= ib↵

j
aj ; ↵ = x, y, z . (4.6)

The four operators bx, by, bz, a satisfy the Majorana fermionic algebra discussed in

the context of the transverse field Ising model. This mapping was first introduced by

Kitaev [27], in a di↵erent two-dimensional honeycomb model with the same structure

of a trivalent lattice with each bond containing the x, y and z interactions. We will

then denote eq. (4.4) as the Kitaev tetrahedral model or the tetrahedral chain.

There is a “doubling” of degrees of freedom: For Jordan Wigner fermions, the

decomposition holds two Majorana modes, referred as bj, aj in the last chapter. This

means that states constructed from this four-Majorana construction must satisfy

some constraint: mappings of spin operators into fermion or bosonic modes of this

sort, are called partons [24], and generally have some occupation constraint. Indeed,

in this case, physical states must satisfy D = bxbybza = 1 [27]. By combining this

relation with the fermionic algebra, one can check that the spin operators satisfy

the defining algebra. By substituting (4.6) in (4.4), one can write:

Htet =
X

↵=x,y,z

J↵
X

hi,ji↵

�
�ib↵

i
b↵
j

�
iaiaj =

X

↵=x,y,z

J↵
X

h,iji↵

u↵
ij
iaiaj , (4.7)

where we have defined u↵
jk
⌘ �ib↵

j
b↵
k
. At first sight, this looks like a quartic hamil-

tonian, describing how the Majorana modes scatter, and, therefore, not solvable.

However, one can check that [u↵
ij
, Htet] = 0. Thus, this fermion bilinear is conserved

on each bond. Henceforth, the fermion spectrum is divided into u↵
ij
= ±1 sectors.

The excess of degrees of freedom causes a redundancy, manifested as a Z2 gauge

symmetry: letting u↵
ij
! ⇣iu↵ij⇣j and ai ! ⇣iai for ⇣i = ±1, leaves the hamiltonian

invariant. Physically, this means that one can think of this problem as a Majorana

fermion ai hopping around a background defined by a Z2 gauge field. To evaluate the

physical spin configurations, we must identify what spin operators commute with

the hamiltonian to establish the gauge invariant states. On every unit cell, there are

two flux operators (also called Wilson loops) defined on the triangular plaquettes,

see Fig. 4.3. Those are written as:

Wj,1 =
Y

hi,ji↵2/

u↵
ij
= �z

j,1,A�
y

j,1,B�
x

j,2,A ; Wj,2 =
Y

hi,ji↵2.

u↵
ij
= �x

j,1,B�
z

j,2,B�
y

j,2,A .

(4.8)
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It can be verified that [Wj,1, Htet] = [Wj,2, Htet] = 0. Those are the operators

on which the physical spectrum is classified. The unitary generators of the Klein

symmetry can also be expressed in terms of the flux:

U1 =
Y

j

Wj,1 ; U2 =
Y

j

Wj,2 , (4.9)

which can be verified by direct computation of U †
1,2�U1,2. The Klein generators then

measures the “flux parity”.

Finding a ground state corresponds to minimizing the ground state energy with

respect to {Wj,1,Wj,2}j. That is, given some flux configuration, in eq. (4.7), define

the hamiltonian matrix:

hij =

(
J↵u↵ij if hi, ji is a type ↵ bond ,

0 otherwise .
(4.10)

One can show on general grounds that a quadratic Majorana hamiltonian can be

brought to the usual form of free complex fermions with Htet =
P

k
"k(c

†
k
ck � 1/2),

where "k are the eigenvalues of hij [27]. The ground state energy is then E =

�1/2
P

k
"k. Then, by fixing the lattice structure with N sites, and picking a gauge

field configuration to match a flux distribution, eq. (4.10) can be diagonalized. The

surprising result is the presence of an emergent exponential degeneracy: All states

satisfying the condition:

Wj,1 = Wj,2 , (4.11)

have the same energy. Therefore, for a given energy, there is a 2Nc-dimensional

Hilbert space, where N is the number of spins and Nc = N/4 is the number of unit

cells. This is a sign of a phase instability in the tetrahedral chain: Any operator

coupling locally to a chirality in a unit cell would lift this degeneracy. We will

address this problem in the next section.
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Figure 4.3: Definition of flux operators on the tetrahedral chain: They are defined on each of the
two triangular plaquettes on every unit cell.

4.3 1d Chiral Spin State

Let us go back to the tetrahedral chain. We want to identify the exponentially

degenerate ground state manifold with a simpler hamiltonian. This can be archieved

by dropping the �z�z terms connecting di↵erent unit cells in Fig. 4.2. Then Htet

becomes a sum of unit cell hamiltonians, involving four spins each, of the form:

Hu.c
tet = Jx(�

x

1,A�
x

1,B + �x

2,A�
x

2,B) + Jy(�
x

1,A�
x

2,A + �x

1,B�
x

2,B) + Jz �
z

2,A�
z

1,B , (4.12)

which can be numerically diagonalized. Of course, W1 = �z

1,A�
y

1,B�
x

2,A and W2 =

�x

1,B�
z

2,B�
y

2,A remain good quantum numbers. In general, a twofold degenerate

ground state is found, corresponding to the flux eigenstates on the triangular pla-

quettes W1 = W2 = ±1. We define a basis {|u1i, |u2i}, chosen such that:

P�1W1P = P�1W2P = ⌧ y , (4.13)

where P =
P

a=1,2 |uaihua| is the ground state projector, and ⌧ y is the y-component

of a pseudospin describing the two energy levels on each unit cell. One can then

define |±i = (|u1i ± i|u2i)/
p
2 as the flux eigenstates. For concreteness, we write

the results for the isotropic case where J↵ = J as:

|u1i =
1p
6
(| ##""i+ | #"#"i � | #""#i � | "##"i+ | "#"#i+ | ""##i) , (4.14)

|u2i =
1p
6
(| ####i+ | ##""i � | #"#"i � | "#"#i+ | ""##i+ | """"i) . (4.15)
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Therefore, by considering this particular limit, we already have the 2N/4 degeneracy.

The previous construction in two dimensions suggests then a perturbation to Htet

to stabilize a chiral phase of the form:

�Q
X

I,J

WIWJ , (4.16)

coupling flux operators on di↵erent unit cells. We choose to couple the flux operators

as:

H1
CSS = Htet �Q1

X

j

Wj,1Wj+1,2 , (4.17)

For Q1 > 0, the ground state is a one-dimensional chiral spin state, with the same

properties as the two-dimensional case described in the last section: time reversal

is spontaneously broken, and flux operators are ordered in a twofold degenerate

ground state. In terms of the Majoranas, Q1 6= 0 induces a uniform background flux

into the gauge fields u↵
ij
. By diagonalizing eq. (4.7), one obtains the dispersion of

the ai fermions in such a background. Any choice of {u↵
ij
} will do, provided that it

generates one of the two ground states {Wj,1 = Wj,2 = 1}j, {Wj,1 = Wj,2 = �1}j.
Explicity writing all the terms:

Htet = i

N/4X

j=1

[ aj,1,A (Jxu1,A;1,B aj,1,B + Jyu1,A;2,A aj,2,A)+ (4.18)

+ aj,1,B (Jzu1,B;2,A aj,2,A + Jyu1,B;2,B aj,2,B)+

+ Jxu2,A;2,B aj,2,Aaj,2,B + Jzu2.B;1,A aj,2,Baj+1,1,A] ,

where uM ;M 0 is the gauge field in the link connecting sublattices M and M 0. In the

above equation, we have already assumed uniformity in the background on the unit

cells. For concreteness, consider the following gauge choice:

u1,A;1,B = u2,B;1,A = u1,B;2,A = u1,B;2,B = u2,A;2,B = 1 (4.19)

u1,A;2,A = �1 . (4.20)
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It can be checked that this indeed holds Wj,1 = Wj,2 = 1. The translation invariance

can be exploited to define momentum modes. Let:

aj,M =

s
2

N/4

⇡X

k=�⇡

eikjak,M . (4.21)

Note that the momentum modes at k are dependent on the mode defined on �k, as
briefly commented in the solution of the TFIM: the reality condition a†

i
= ai implies

a†
k
= a�k. It can be checked that given k, q 2 [�⇡, ⇡), {ak,M , aq,M 0} = �k,�q�M,M 0 .

Therefore, {ak,M , a†
q,M 0} = �k,q�M,M 0 , which is the usual fermionic algebra defined

on the momentum space. This means that if one works in half of a Brillouin zone

(say k 2 [0, ⇡)), where independent Majorana modes are defined, one can treat the

quadratic Majorana hamiltonian as an ordinary free fermion hamiltonian, filling up

the bands to construct the spectrum.

Given that there are four sublattices, a four-component spinor is defined:

Ak =

0

BBB@

ak,1,A
ak,1,B
ak,2,A
ak,2,B

1

CCCA
. (4.22)

Eq. (4.7) can then be rewritten in a uniform background as:

Htet =
X

0<k<⇡

A†
k
htet(k) Ak ⌘

X

0<k<⇡

A†
k
2i

0

BBB@

0 Jx �Jy �Jze�ik

�Jx 0 Jz Jy
Jy �Jz 0 Jx

Jzeik �Jy �Jx 0

1

CCCA
Ak ,

(4.23)

where we are counting only the modes on half of the Brillouin zone. We can now

treat Ak as a complex fermion spinor and obtain the spectrum by diagonalizing the

above matrix. The obtained energy spectrum is given as:

"(k) = ±2

s

(J2
x
+ J2

y
+ J2

z
)± 2|Jz|

q
J2
x
+ J2

y
cos

✓
k

2

◆
. (4.24)
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The four bands corresponds to choosing the signs inside and outside the square

root. The energy gap �, defined as the di↵erence between the negative bands and

the minimum of the positive energy bands is shown in Fig. 4.4, alongside with the

plot of the spectrum in three distinct cases. For J2
x
+ J2

y
> J2

z
or J2

x
+ J2

y
< J2

z
,

there is an energy gap between the filled states with "(k) < 0 and empty states.

This is what we expect for a symmetry-breaking phase. However, for J2
x
+ J2

y
= J2

z
,

a gapless point occurs at k = 0, indicating a continuous phase transition!

Figure 4.4: Energy gap and spectrum of a fermions. (a) and (c): Gapped spectrum at the topo-
logical and trivial phases, respectively; (b): Gapless spectrum at the critical region.

This is a surprise, since one expects a gapped phase by stabilizing the exponen-

tial degeneracy. Note the similarity with the TFIM: By writing the spin variables as

real (Majorana) fermions (by introducing non-locality in the Jordan-Wigner trans-

formation or redundancy in the parton approach), a gapless spectrum in the fermions

indicates a continuous phase transition between two di↵erent one-dimensional phases

(a ferromagnet-paramagnet transition in the Ising model). Less discussed, however,

was the interpretation of each gapped side in terms of the fermions. This is a subtle

matter, and is an example of a topological phase transition. “Topological” refers

here to the absence of a local order parameter. On a side of the transition, both

models are an example of a one-dimensional topological superconductor [89], and
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the fermions behave as a trivial insulator on the other side. They are distinguished

by the Majorana number [90]:

M = sgn (Pf htet(0)) sgn (Pf htet(⇡)) , (4.25)

where Pf is called the Pfa�an, a function of skew-symmetric matrices which squares

to the determinant and can be numerically evaluated [91]. By numerically evaluating

the Pfa�an in the first quantized hamiltonian at k = 0, ⇡, we find that M = �1
for J2

x
+ J2

y
< J2

z
, which corresponds to the topological superconductor phase, and

M = 1 for J2
x
+ J2

y
> J2

z
, characterizing the insulating phase.

There is an interesting interpretation of such a number, supporting the “topo-

logical” denomination: If open boundary conditions are considered in the M = �1
phase, it is found that there are two degenerate energy levels sitting at E = 0,

whose wavefunctions are exponentially localized on the corresponding boundaries of

the chain. Those are Majorana zero modes, and they cannot exist in isolation, since

we have determined that real fermions are half of a complex fermion (on which it

is possible to construct a Hilbert space). In the case of the TFIM, this topological

phase maps to the usual symmetry breaking phase: A pair of Majoranas at the ends

of the chain are paired up to construct a two-dimensional Hilbert space, representing

the two degenerate states in the ferromagnetic phase. The insulating state, where

the Majorana fermions are all paired up and filling the negative-energy bands, is the

trivial paramagnet state.

For the perturbed tetrahedral chain, we already know that it must have a

twofold degeneracy from the ordering of the fluxes. Furthermore, the mapping

between the Majorana states and spin states is more subtle due to the nature of

the parton construction, as explained below. Since our interest lies in the overall

properties of the symmetry-breaking state and its transitions, we will focus our

e↵orts on understanding the J2
x
+ J2

y
> J2

z
region of the phase diagram, which we

will continue to refer as the chiral spin state or chiral state. In the rest of this

chapter, we work in the isotropic limit Jx = Jy = Jz = J > 0, and the physics of

both the complementary region J2
x
+ J2

y
< J2

z
and corresponding transition will be

discussed in the fifth chapter.

Let us now turn to excitations, which can be created by the Majorana modes

b↵, a. The ground state is spanned by |U±i ⌦ |⌦i, where |U±i are the gauge field
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configurations giving the uniform flux states, and |⌦i is the filled Fermi sea of

a fermions in the half Brillouin zone. Naively, excited states are constructed by

defining a†
k
|gsi, and so forth. However, there is an important subtlety: only gauge

invariant sates satisfying D = 1 are allowed [92]. If |gsi is in the ground state, the

first non-trivial states which can be constructed are b↵
i
ai|gsi, since ai ! ⇣iai and

b↵
i
! ⇣ib↵i .

It can be checked that if the site i is a corner of one of the two triangles in

the unit cell, b↵
i
ai|gsi / �↵

i
|gsi will carry the opposite flux. We will refer to such

states as vortex excitations. In order to construct them explicitly, we must study the

spectrum in the presence of flux insertions. First, let us consider again the ground

state with Wj,1/2 = 1, and periodic boundary conditions. The first non-trivial

excitation one can think of is a single vortex, drawn in Fig. 4.5(a): A particular flux

on a triangle is flipped, and a vortex is created if the spin operator acts on 1, A or

2, B. A second type of excitation is a vortex pair, where the flux of both triangles

are flipped, as shown in Fig 4.5(b). It can be created by the action of a single spin

operator on 1, B and 2, A, for example.

Figure 4.5: A (a) single vortex and (b) vortex pair in the uniform ground state. The ± labelling
in the plaquettes corresponds to W = ±1.

At first, this distinction seems trivial: flux operators provide a Z2 classification

for the excitations: the sign of the fluxes indicate the presence/absence of a vortex,

and one can understand a vortex pair as two single vortices bound together, costing

twice the energy. This, however, does not happen in general. Remember that Htet

had an exponential degeneracy: In fact, the ground state condition corresponds to

the proliferation of vortex pairs: Wj,1Wj,2 = 1. In contrast, a single vortex has

a finite energy gap of ' 0.29J , computed by numerically diagonalizing eq. (4.10)
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flipping a flux operator in a uniform background.

Since our interest lies in the chiral spin state, this picture must be understood

for Q1 > 0. Since the coupling of the flux is just like a classical Ising model, the

values of the energy costs for each excitation in Fig 4.5 is readily evaluated:

Single vortex : �(a)
v

= 0.29J + 2Q1 , (4.26)

Vortex pair : �(b)
v

= 4Q1 . (4.27)

(4.28)

For Q1 ⌧ J , vortex pairs remains the low energy excitations, albeit now gapped.

In the opposite regime Q1 � J , single vortices costs less energy, and take the place

as the first excited states. That is, there is an energy level crossing at Q⇤
1 ⇡ 0.15J .

We will be interested, however, in open boundary conditions. Since we are deal-

ing with a symmetry-broken phase in one spatial dimension, the natural excitations

in this case are domain walls, as explained in Sec. 2.1. Indeed, domain walls with a

vortex pair interface, as shown in Fig. 4.6, cost energy �dw = 2Q1, lower than both

�(a)
v ,�(b)

v . We then conclude that, in this limit, gapped domain walls dominate the

bottom part of the spectrum.

Figure 4.6: A domain wall between the two degenerate ground states of the chiral spin state.

4.4 Zigzag chain

In order to estabilish the chiral spin state as a stable phase, it is necessary to study

perturbations. We choose to preserve the quoted symmetries of the tetrahedral

chain, by studying a particular perturbation:
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�H = J 0
x

X

j

X

l=1,2

�x

j,l,B
�x

j+1,l,A , (4.29)

transforming the tetrahedral chain into a “zigzag chain”, with the full hamiltonian

H1 = Htet �Q1

X

j

Wj,1Wj,2 + J 0
x

X

j

X

l=1,2

�x

j,l,B
�x

j+1,l,A , (4.30)

see Fig. 4.7(a). This choice is motivated by the Kitaev model on the triangular

lattice, where the hamiltonian is of the form of eq. (4.4), where the Ising bonds

are distributed equally between the six nearest-neighbors of the lattice. One can

see then this zigzag chain as a strip of the full lattice, see Fig. 4.7(b). There is an

ongoing debate on the nature of its ground state: Early numerical studies pointed

to a nematic phase [93, 94], but recent work showed convincing numerical evidence

that there is an antiferromanetic stripe-ordered phase [95]. Therefore, our model is

of interest even for Q1 = 0, since it can shine light on ground state properties in one

higher dimension in a simpler environment.

Figure 4.7: (a) Zigzag chain highlighting all terms in the hamiltonian, (b) The zigzag chain as a
strip of a triangular lattice, highlighted in red.

In this section, we will study the perturbative limit where J 0
x
, Q1 ⌧ J . To
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deal with the exponential degeneracy of the ground states for Q1 = J 0
x
= 0, we

will use degenerate perturbation theory, following in similar steps as [27]. Consider

H = H0 + V , where H0 is an unperturbed hamiltonian and V is a perturbation.

We seek He↵ , called the e↵ective hamiltonian, which describes the physics of H0

eigenstates due to the perturbation V . It can be shown that the e↵ective hamiltonian

can be obtained from the expansion:

He↵ = E0 + P�1 (V + V G0
0V + V G0

0V G0
0V + · · · )P , (4.31)

where E0 is the ground state energy, and G0
0 = (E0�H0)�1 is the Green’s function,

where the 0 indicates that G0
0 = 0 if acted on the ground state, and is non-trivial

otherwise. Take H0 to be the sum of decoupled unit cells, each described by eq.

(4.12), with each site having a local Hilbert space spanned by {|u1i, |u2i}. However,
to do perturbation theory, the full spectrum must be numerically computed. The

idea is that, in the expansion above, the perturbation V generates excitations in the

ground state, whose energy cost is measured by each factor of G0
0 ⇠ �(�E)�1. By

creating and removing such excitations, we are left with an operator acting on the

ground state manifold.

The perturbation V accommodates all the perturbations left out of H0:

V = J
X

j

�z

j,2,B�
z

j+1,1,A + J 0
x

X

j

X

l=1,2

�x

j,l,B
�x

j+1,l,A �Q1

X

j

Wj,2Wj+1,1 . (4.32)

The first term might be worrying, since is controlled by a “large energy scale”.

However, as argued in the exact solution, the exponential degeneracy still remains

if this term is present. In fact, we will compute He↵ up to second order, and this

term only leads to a correction to the ground state energy, which will be ignored.

The first order term acts as a pseudospin Ising term:

H(1)
e↵ = P�1V P = �Q1

X

j

⌧ y
j
⌧ y
j+1 , (4.33)

as derived from eq. (4.13). Ordering ⌧ y corresponds to the chiral spin state, and

the corresponding excitations are vortex pairs. Note that single vortices are not
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captured by degenerate perturbation theory, since we are probing energetics with

the constraint Wj,1 = Wj,2. No further non-trivial first order terms are generated.

The second order terms are computed by evaluating the matrix elements:

ha|H(2)
e↵ |bi = ha|V G0

0V |bi =
X

n/2G.S

ha|V |ni 1

E0 � En

hn|V |bi , (4.34)

where |ni are the excited eigenstates of H0, and |ai, |bi are two elements of the

ground state basis. There is no need to compute a 2N/4-dimensional matrix: Note

that every perturbation is a sum over terms of the form:

V pair = � O1 ⌦O2 , (4.35)

where O1, O2 acts on neighboring unit cells, and � is an energy scale. For example,

for the flux coupling, O1 = Wj,2, and O2 = Wj+1,1. Since all perturbations only

couple neighboring unit cells, the sum over excited states and |ai, |bi can be decom-

posed into a product of two excited states of individual unit cells, and |u1i, |u2i,
respectively. At second order, one can then just compute the matrix elements:

hua, ub|Hpair
e↵ |uc, udi = ��0

X

n1,n2 /2G.S

hua|O1|n1ihub|O2|n2i⇥ (4.36)

⇥ 1

E0 � En1 � En2

hn1|O0
1|ucihn2|O0

2|udi ,

where a, b, c, d = 1, 2, and the double sum is over excited states of a single unit

cell. The primed index distinguishes between two di↵erent terms generating the

perturbation. By computing the above matrix elements, one can write this 22 = 4-

dimensional matrix in the pseudospin basis of the corresponding unit cells:

Hpair
e↵ = ��0

X

↵,�

c↵,�⌧
↵

1 ⌧
�

2 , (4.37)

the dimensionless coe�cients c↵� are given by c↵,� = Tr(⌧↵1 ⌧
�

2 H
pair
e↵ )/(4��0). By

evaluating those matrix elements, it turns out that the only non-trivial contribution

comes from the J 0
x
term:
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H(2)
e↵ =

(J 0
x
)2

J

X

j

⇥
cx,x⌧

x

j
⌧x
j+1 + cz,z⌧

z

j
⌧ z
j+1 + cx,z

�
⌧x
j
⌧ z
j+1 + ⌧ z

j
⌧x
j+1

�⇤
, (4.38)

which can be rewritten as:

Htet =
(J 0

x
)2

J

X

j

⌧ T

j

0

B@
cx,x 0 cx,z
0 0 0

cx,z 0 cz,z

1

CA ⌧j+1 . (4.39)

One can diagonalize this quadratic form by rotating the pseudospin in the y direc-

tion, and we get:

H(2)
e↵ = �(J 0

x
)2

J

X

j

⇥
↵ ⌧x

j
⌧x
j+1 + � ⌧ z

j
⌧ z
j+1

⇤
, (4.40)

where ↵ ' 0.90589 and � ' 1.51424⇥10�3. Since �/↵ ⇠ 10�3, the second term can

be safely discarded. Therefore, the e↵ective hamiltonian up to second order is:

He↵ = �
X

j


Q1 ⌧

y

j
⌧ y
j+1 + ↵

(J 0
x
)2

J
⌧x
j
⌧x
j+1

�
+ · · · . (4.41)

This is nothing more than the XY chain! A new phase transition at Q1 ' ↵(J 0
x
)2/J

is predicted from the chiral spin state to a h⌧x
j
i 6= 0 phase, in the c = 1 universality

class. However, the pseudospin is a low energy operator, which can be described

by multiple “high-energy” operators defined on the lattice scale. If O is an oper-

ator defined on the lattice, computing the projected part P�1OP corresponds to

constructing all low-energy operators to which it reduces to. Therefore, we can

identify the nature of the phase by studying the symmetries of lattice operators

which project into ⌧x. The most general operator we can construct in a unit cell is

O = �↵
j,M1

��
j,M2

��
j,M3

��
j,M4

, where M1,2,3,4 are one of the four sublattices in the unit

cell. We list some of the operators which contains ⌧x upon projection:
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P�1�x

j,1,A�
x

j,2,AP = P�1�x

j,1,B�
x

j,2,BP ⇠ A1⌧
x

j
+ · · · (4.42)

P�1�y

j,1,A�
y

j,1,BP = P�1�y

j,2,A�
y

j,2,BP ⇠ A2⌧
x

j
+ · · · (4.43)

· · · (4.44)

A1,2 are numerical coe�cients. We checked that all of such operators are odd only to

K1 or K2. In the examples above, both operators are clearly even under time reversal

and transform into each other under rotations. Therefore, the symmetry-breaking

phase in question has a breaking pattern K ' Z2 ⇥ Z2 ! Z2. We will refer to this

phase as a Klein paramagnet (KPM), since it only breaks the Klein symmetry. This

is, indeed, the conjectured phase of [88], and, to our knowledge, it was not found

previously in any of the two-dimensional or one-dimensional variants of Kitaev-like

models. For concreteness, we will define a corresponding order parameter as:

Kj,N = �x

j,1,N�
x

j,2,N ; N = A,B , (4.45)

but any of the operators which projects to ⌧x is viable.

We can indeed conclude that the chiral spin state is stable, and is not destroyed

immediately if a T �preserving perturbation is added. Independently, if one consid-

ers the pure zigzag chain for Q1 = 0, the system orders to a time-reversal invariant

phase for J 0
x
⌧ J . Since it is described by the XY chain, the transition is indeed

beyond the LGW paradigm. It is also worth noting the stark di↵erence of the KPM

to the stripe ordered phase, obtained in the triangular lattice Kitaev model. How-

ever, the comparison to the triangular lattice model is premature, since we are far

away from homogeneity J 0
x
' J .

It is interesting to note that the domain walls remain as robust low energy

excitations in the presence of small J 0
x
, now corresponding to an Ising domain wall

in the ⌧ y variable. Similarly, this analysis predicts domain walls in the KPM phase,

in the ⌧x direction. A continuous transition is then the point where both excita-

tions become gapless. We will later see that the domain wall physics also plays an

important role in other transitions.

However, we are interested in the full zigzag chain in eq. (4.30), and numer-

ical confirmation is needed for this transition. Conveniently, the model is one-

dimensional, where the method of density matrix renormalization group (DMRG)
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[96–98] is e↵ective. The main idea is to construct an ansatz for the ground state by

truncating the Hilbert space by ignoring small eigenvalues of the reduced density

matrix. The property that allows DMRG to work well in one dimension is twofold:

(1) The cost scales polynomially with the number of lattice sites; (2) Gapped, one-

dimensional systems have a constant bipartite entanglement entropy [47]. This

means that a constant number of parameters can be fixed while the system size is

increased, since the eigenvalues are directly related to the entanglement entropy.

Entanglement-based probes can also be used to detect quantum phase tran-

sitions. In general, one may compute the order parameters of the corresponding

phases and study the analytic behaviour at the transition in the scaling limit (tak-

ing N !1 by studying larger and larger systems sizes) Following earlier work [99],

one can point to a phase transition if the largest eigenvalue of the reduced density

matrix hits a minimum. For small J 0
x
and Q1, this was plotted in Fig. 4.8 along with

the transition line computed from perturbation theory. It has very good agreement

for small enough values of the parameters, indicating, in fact, a Gaussian second

order phase transition.

0.00 0.05 0.10 0.15 0.20
0.00

0.01

0.02

0.03

0.04

0.05

Figure 4.8: Phase diagram for Q, J 0
x ⌧ J = 1. DMRG estimates (black dots) are compared to the

perturbation theory calculation Q1 = ↵(J 0
x)

2/J (red line).

DMRG is not constrained to any energy scale. The ground state phase diagram

can then be computed for any value of Q, J 0
x
, shown in Fig. 4.9. Remarkably,

a fourfold degenerate stripe-ordered phase emerges for strong enough J 0
x
, ordering

h�xi 6= 0. It breaks all symmetries, and is of antiferromagnetic nature, see Fig. 4.10.

It is then confirmed that at the limit J 0
x
' J , the zigzag chain reproduces the

results found two-dimensional triangular lattice with an antiferromagnetic stripe

phase. Furthermore, at the intersections of the CSS-Stripe, CSS-KPM and KPM-
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CSS

KPM

Stripe
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0

0.05

0.1

0.15

0.2

0.25

J 0
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Figure 4.9: Phase diagram of the zigzag chain in the isotropic regime. For small enough J 0
x, only

the CSS and KPM phases can be seen with the transition between them. For strong enough J 0
x, a

stripe ordered phase appear. The yellow star pinpoints the tricritical point.

Stripe transitions, a tricritical point is found.

In the big picture of the LGW paradigm, the CSS-Klein transition would be first

order or fine-tuned, say, due to Jx = Jy = Jz = J , since they live between ordered

phases. However, we already see this is not the case: If we take Jx,y,z di↵erent from

each other (keeping J2
x
+ J2

y
> J2

z
), the ground state manifold on which eq. (4.31)

is defined remains the same. In the next chapter, we will take a di↵erent limit and

show that all three transitions can become continuous, and discuss possible exotic

transitions.
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Figure 4.10: The four degenerate ground states of the stripe phase, where the spins are pointing
in the �x direction. They can be labelled by (sgnh�x

j,1,Ai, sgnh�x
j,2,Ai), and related by the action

of T ,Kn=1,2. The states (+,+) and (�,�) explicitly breaks R, meanwhile (+,�) and (�,+)
preserves it.



Chapter 5

Phase transitions of the zigzag chain

We will now turn our attention to a di↵erent limit of the zigzag chain. In doing

so, both the nature of the phase transitions involving the stripe phase and the

connection to DQC will become clear. In the first section, we introduce a new set

of pseudospins suitable in the anisotropic limit that we are interested in. Following

this construction, an e↵ective spin ladder model is obtained, followed by a phase

diagram analysis in the second section. We show that all three transitions found

in the last chapter are present in the e↵ective model, and the central charge of the

KPM-Stripe transition can be obtained. In the third section, the zigzag chain is

modified slightly without changing the symmetries. The modification allows a field

theory analysis of the CSS-Stripe transition.

All this chapter is composed with original work.

5.1 Pseudospin representation

To further understand the phase transitions, we will study di↵erent limits, by re-

laxing the isotropic condition on the tetrahedral chain. Note a particular aspect of

the tetrahedral chain (which is true in general for compass models): If only one of

the spin directions is retained, the hamiltonian becomes a classical Ising model on

dangling bonds:

Htet ! J↵
X

hi,ji↵

�↵
i
�↵
j
. (5.1)

96
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The ground state is exponentially degenerate where each separate bond is in an

antiferromagnetic state between the two spins. It can also be understood as a local

conservation law: For every hi, ji↵ bond, the operator �↵
i
�↵
j
commutes with the

hamiltonian. If other Ising-like interactions are reinstated, fluctuations spoil this

conservation law, however weakly if J� 6=↵ ⌧ J↵. We will develop a procedure to

construct an e↵ective hamiltonian in this limit. The order parameters for the three

symmetry-breaking phases are:

Chiral Spin State Wj,1 = �z

j,1,A�
y

j,1,B�
x

j,2,A ; Wj,2 = �x

j,1,B�
z

j,2,B�
y

j,2,A (5.2)

Klein paramagnet Kj,N = �x

j,1,N�
x

j,2,N ; N = A,B (5.3)

AFM Stripe Sj,M = �x

j,M
; M = (1, A), (2, A), (1, B), (2, B) . (5.4)

In practice, the Klein order parameter can be fully constructed from the stripe order

parameter. Furthermore, we note the algebraic relations:

{Wj,1, Sj,1,A} = {Wj,1, Sj,1,B} = {Wj,2, Sj,2,A} = {Wj,2, Sj,2,B} = 0 . (5.5)

It can be verified that all other combinations of W and S commute. The full zigzag

chain model already has a natural anisotropy: For Jx, J 0
x
6= 0, ordering in the x-

directions is preferred. Therefore, one can then study the limit in which Jx is much

larger than all other energy scales. Of course, there is no guarantee that the same

phase diagram structure emerges a priori. Keeping this possibility in mind, define:

⇢x
j,l
⌘ �x

j,l,A
�x

j,l,B
; l = 1, 2 . (5.6)

In the limit where Jy, Jz ! 0, [⇢x
j,1/2, H1] = 0, generating the extensive degeneracy.

The interesting aspect of this limit is that ⇢x also commutes with the order param-

eters. Therefore, as suggested by the algebra between the stripe and chiral order

parameters, one can then define pseudospin variables as:
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Xj,1 = Wj,1 = �y

j,1,B�
x

j,2,A�
z

j,1,A , (5.7)

Zj,1 = Sj,1,B = �x

j,1,B , (5.8)

Yj,1 = iZj,1Xj,1 = �z

j,1,B�
x

j,2,A�
z

j,1,A , (5.9)

Xj,2 = Wj,2 = �x

j,1,B�
z

j,2,B�
y

j,2,A , (5.10)

Zj,2 = Sj,2,A = �x

j,2,A , (5.11)

Yj,2 = iZj,2Xj,2 = �z

j,2,A�
x

j,1,B�
z

j,2,B , (5.12)

⇢x
j,1 = Sj,1,ASj,1,B = Sj,1,AZj,1 = �x

j,1,A�
x

j,1,B , (5.13)

⇢z
j,1 = �z

j,1,A , (5.14)

⇢y
j,1 = i⇢x

j,1⇢
z

j,1 = �y

j,1,A �x

j,1,B , (5.15)

⇢x
j,2 = Sj,2,ASj,2,B = Sj,2,BZj,2 = �x

j,2,A�
x

j,2,B , (5.16)

⇢z
j,2 = �z

j,2,B , (5.17)

⇢y
j,2 = i⇢x

j,2⇢
z

j,2 = �x

j,2,A �y

j,2,B . (5.18)

One can check that no degrees of freedom are added or removed, since there are

four copies of the su(2) algebra per unit cell. The full hamiltonian is then rewritten,

for both couplings of flux operators:

H1 = Jx
X

j

X

l=1,2

⇢x
j,l
+ J 0

x

X

j

�
Zj,1⇢

x

j+1,1Zj+1,1 + Zj,2⇢
x

j,2Zj+1,2

�
+ (5.19)

+ Jy
X

j

�
⇢y
j,1⇢

z

j,2Xj,2 + ⇢y
j,2⇢

z

j,1Xj,1

�
+ Jz

X

j

�
⇢z
j,2⇢

z

j+1,1 + ⇢z
j,1⇢

z

j,2Xj,1Xj,2

�

�Q1

X

j

Xj,1Xj+1,2 ,

We now proceed to do degenerate perturbation theory. The degenerate subspace is

now unique, defined by the projector:

P = |{⇢x
j,l

= �1}j,lih{⇢xj,l = �1}l,j|⌦ IX,Y,Z , (5.20)

where IX,Y,Z is the identity on the Hilbert space constructed from the second set of

pseudospins. This means that, in this limit, the low energy physics is completely

dictated from a pair of pseudospins per unit cell. By computing the terms in eq.
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(4.31), the first order terms are �J 0
x

P
j,l
Zj,lZj+1,l and �Q1

P
j
Xj,1Xj+1,2. It can

be checked that at second order, the only term which contributes is:

J2
y

X

j,j0

P�1
⇥�
⇢y
j,1⇢

z

j,2Xj,2 + ⇢z
j,1⇢

y

j,2Xj,1

�
G0

0

�
⇢y
j0,1⇢

z

j0,2Xj0,2 + ⇢z
j0,1⇢

y

j0,2Xj0,1

�⇤
P (5.21)

= �
J2
y

2Jx

X

j

Xj,1Xj,2 . (5.22)

Again, we are ignoring constant terms. Up to second order, then:

H1
e↵ = �J 0

x

X

j

X

l=1,2

Zj,lZj+1,l �Q1

X

j

Xj,1Xj+1,2 �
J2
y

2Jx

X

j

Xj,1Xj,2 + · · · , (5.23)

which is a spin ladder model, see Fig. 5.1. This chapter will be dedicated to

understanding the phase structure of this hamiltonian, connecting to the earlier

phase diagram found in the isotropic case.

Figure 5.1: E↵ective spin ladder model obtained in the anisotropic limit of the zigzag chain: Two
ising chains, labelled by l, are coupled by Ising interactions in the transverse direction.

Before tackling this task, it is useful to consider symmetries. From the pseu-

dospin mapping, the previously discussed symmetries act as (explicitly adding trans-

lations):

T : {i! �i, Xj,l ! �Xj,l, Zj,l ! �Zj,l, Yj,l ! �Yj,l, } , (5.24)

R : {j ! �j, Xj,2 $ Xj,1, Zj,2 $ Zj,1 Yj,2 $ Yj,1, } , (5.25)

Kn=1,2 : {Zj,n ! �Zj,n, Yj,n ! �Yj,n} , (5.26)

Tx : {j ! j + 1} (5.27)
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The action of the symmetries on the ⇢↵ pseudospins are omitted since they are

gapped out at low energies. Note that the Klein subgroup is generated by an

Ising parity
Q

j
Xj,n on each chain, the lattice rotation symmetry exchanges the

two chains, and time reversal has the expected action. At this order in perturbation

theory, there are also “fragile symmetries”, which are not guaranteed to survive at

higher orders in perturbation theory. For eq. (5.23):

K̄n=1,2 : {Xj,n ! �Xj,n, Yj,n ! �Yj,n} . (5.28)

For eq. (5.47):

K̄ : {Xj,l ! �Xj,l, Yj,l ! �Yj,l} . (5.29)

Those symmetries are fragile since they are not satisfied non-pertubatively, and thus

expected to be broken at higher order contributions. Therefore, they will be ignored.

Let us explore limits of the above models and show that the three gapped phases

are found.

5.2 Triangulating the phase diagram

Define J? = J2
y
/(2Jx), the term being responsible for the coupling between the two

chains. Consider another set of pseudospins:

qz
j
= Zj,1Zj,2 , (5.30)

qx
j
= Xj,2 , (5.31)

⌘z
j
= Zj,1 , (5.32)

⌘x
j
= Xj,1Xj,2 . (5.33)

We then have:

H1
e↵ = �J 0

x

X

j

(1 + qz
j
qz
j+1)⌘

z

j
⌘z
j+1 � J?

X

j

⌘x
j
�Q1

X

j

qx
j
⌘x
j+1q

x

j+1 . (5.34)
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It turns out, for Q1 = 0, eq. (5.23) is a model known as the quantum compass

ladder, discussed by Brzezicki and Olés [100]. Only the z component of q↵ appears

in the hamiltonian. In the original paper, it was argued that the ground state must

order in the qz variables, essentially reproducing the ground state of a classical Ising

chain. By imposing ferromagnetic order in hqzi = hZj,1Zj,2i 6= 0, the Klein symmetry

is immediately broken down to Z2. Then, in this limit, we basically have a TFIM

at low energies:

H1
e↵(Q1 ! 0) = �2J 0

x

X

j

⌘z
j
⌘z
j+1 � J?

X

j

⌘x
j
. (5.35)

For |J 0
x
|� |J?|, we have ferromagnetic order in hqzi = hZj,1Zj,2i 6= 0 and h⌘zi =

hZj,1i 6= 0, which corresponds to a fourfold stripe ordered phase (two degenerate

states in qz order and another two in ⌘z) in the original spin variables, since ⇢x =

�1. Otherwise, for |J 0
x
| ⌧ |J?|, hqzi = hZj,1Zj,2i 6= 0 and h⌘xi = hXj,1Xj,2i 6= 0

corresponds then to the Klein paramagnet state. This leads to a prediction that the

KPM-Stripe transition is an Ising transition with c = 1/2.

Consider again another limit, where J? � J 0
x
, Q1. We again apply perturbation

theory in the ground state, now defined as |{⌘x
j
= 1}i. The first order term is

�Q1

P
j
qx
j
qx
j+1. There is a ⇠ (J 0

x
)2 second order term, which generates a qzqz

interaction. The e↵ective hamiltonian is of the form:

H1
e↵(J? � J 0

x
, Q1) ' �

(J 0
x
)2

�

X

j

qz
j
qz
j+1 �Q1

X

j

qx
j
qx
j+1 , (5.36)

where � / J?. This is the XY chain, and indeed does correspond to the CSS-

Klein transition: ordering qz and ⌘x leads to the Klein phase, whereas ordering

⌘x
j
= Xj,1Xj,2 and qx

j
= Xj,2 leads to the twofold degenerate chiral spin state. This

agrees with the previous calculation. A third limit of interest is where Q1 = J?:

H1
e↵(J? = Q1) = �J 0

x

X

j

(1 + qz
j
qz
j+1)⌘

z

j
⌘z
j+1 � J?

X

j

(1 + qx
j
qx
j+1)⌘

x

j+1 . (5.37)

Taking J 0
x
� J?, qz, ⌘z are ordered, corresponding to the stripe phase. On the

other hand, in J 0
x
⌧ J?, qx, ⌘x are ordered into the chiral spin state. This is the
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CSS-Stripe transition, however, its nature is not clear from the above model, and

will be dealt in the next section.

There is a hidden duality in this spin ladder model. Let us redefine (5.30-5.33)

as:

q̃z
j
= Zj+1,1Zj,2 , (5.38)

q̃x
j
= Xj,2 , (5.39)

⌘̃z
j
= Zj+1,1 , (5.40)

⌘̃x
j
= Xj+1,1Xj,2 , (5.41)

where the hamiltonian is rewritten as:

H1
e↵ = �J 0

x

X

j

(1 + q̃z
j
q̃z
j+1)⌘̃

z

j
⌘̃z
j+1 �Q1

X

j

⌘̃x
j
� J?

X

j

q̃x
j
⌘̃x
j
q̃x
j+1 , (5.42)

which, in the thermodynamic limit, is the same as eq. (5.34) with exchanged cou-

plings J? $ Q1: This means that the full phase diagram must be symmetric under

J? and Q1
1. For J? 6= Q1, we found the CSS-Klein and Klein-Stripe transitions,

which, under this duality, must also occur for Q1 � J 0
x
, J? and J? = 0, respectively.

This places constraints on the phase diagram. We conjecture the form shown in

Fig. 5.2: Ising transitions occur at J? = 0 and Q1 = 0 planes and generically at the

Klein-Stripe transition. The Gaussian transitions occur between the CSS and Klein

phases also generically.

Two objections may be raised at this point: (1) Why is there no intermediate

gapped phase between the three already discussed? (2) How do these results connect

to the phase diagram shown in Fig. 4.9, since they are at completely di↵erent limits?

The partial answer comes from trying to extract a phase diagram for J? = const.

from the conjectured 3d phase diagram, as illustrated in Fig. 5.3. It predicts a

tricritical point between the three phases, which corresponds to the CSS-Stripe

transition in the self-dual line J? = Q1. In the DMRG results previously described,

the KPM phase only emerges for Q1 ⌧ J, J 0
x
. However, in the light of those results,

1It can be checked by studying the same limits and list all possible orderings of ⌘̃ and q̃, that
all three phases remains.
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Figure 5.2: Conjectured phase diagram of eq. (5.23). The red lines indicate a c = 1 transition,
while c = 1/2 transitions are in black. The CSS-Stripe transition at Q1 = J? occurs for J? = Q1.

it may be that there is a Klein phase “hiding” at Q1 � J 0
x
, J . Indeed, a DMRG

sweep at Q1 large of eq.(4.30) finds a Klein paramagnet between the CSS and stripe

phases.

Figure 5.3: Two dimensional slice of fig 5.2 at J? = const shows a two-dimensional phase diagram
with a Klein paramagnet phase emerging for large enough Q1. Compare to Fig 4.9.

There is also an important property of conformal field theories which can be

exploited to find out about universality classes numerically. The entanglement en-

tropy of a one dimensional cut of length ` in a conformal field theory on a torus of

radius L/2⇡ is given as [101]:
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S(`) = const.+
c

6
ln


L

⇡
sin

⇣⇡
L
`
⌘�

, (5.43)

where the first term is a non-universal constant, and c is the central charge. The

entanglement entropy can be computed in a straightforward manner from a MPS

state. Two points at the phase transition between the CSS and Klein phase are

chosen from Fig. 4.9 , and the corresponding entanglement entropy is computed

in Fig. 5.4, fitting with the expression derived from the CFT. Both fits agree with

good precision with an Ising CFT with c = 1/2, derived in the anisotropic limit.

c = 0.506

c = 0.507

(J 0
x, Q1)

10 20 30 40 50 60 70 80 90 100

1.2

1.4

1.6

`

S
(`
)

(0.229, 0.006)

(0.23, 0.012)

Fit

Figure 5.4: Entanglement entropy as a function of `, the partition length, of two points in the
phase diagram sitting on the KPM-Stripe transition in the zigzag chain.

Since both the Klein paramagnet and the stripe order are ordered phases sep-

arated by a continuous transition, one may label this transition as beyond the

LGW paradigm. Note, however, that h�x

i
�x

j
i ' h�x

i
ih�x

j
i in the stripe phase, which

means that the Klein order parameter is non-zero. This is due to an important

subtlety: The group of preserved symmetries of the KPM phase is generated by

{T ,R,K1 · K2} 2 Gp=KPM, then one can verify that Gp=stripe C Gp=KPM. Therefore,

this transition is LGW-allowed, as discussed in Sec. 2.1. From the transitions found

in Figs. 4.9, 5.2, this is the only one where this subgroup structure is found.

In our model, it turns out another ordered-ordered transition is also an excep-

tion: the transition found using the Majorana construction in the tetrahedral chain

on Sec. 4.3. We will revisit it in the light of the pseudospin representation. In eq.

(5.19), by taking Q1 > 0 and J 0
x
= 0, one can see that Xj,l orders in one of the two
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degenerate chiral spin states. This is equivalent to applying the pseudospin mapping

on eq. (4.17). For Xj,1 = Xj,2 = +1:

H1
CSS = Jx

X

j

X

l=1,2

⇢x
j,l
+Jy

X

j

�
⇢y
j,1⇢

z

j,2 + ⇢y
j,2⇢

z

j,1

�
+Jz

X

j

�
⇢z
j,2⇢

z

j+1,1 + ⇢z
j,1⇢

z

j,2

�
�Q1 .

(5.44)

For Jy = 0, this reduces to the TFIM. For Jx > Jz, the ⇢ pseudospin is in a trivial

paramagnet phase, which corresponds to the previously found CSS phase. On the

other hand, for Jz > 0, h⇢z
j,1i = h�z

j,1,Ai 6= 0 and h⇢z
j,2i = h�z

j,2,Bi 6= 0 orders,

breaking both lattice rotation and Klein symmetries. This is a chiral magnetic

phase, which we will denote as CSSm. Indeed Gp=CSSm C Gp=CSS, and thus the Ising

CSSm�CSS transition is LGW allowed. This transition is realized in the Majorana

representation for J2
z
= J2

x
+ J2

y
exactly, matching eq. (3.56), describing a gapless

Majorana cone in the Ising transition. The robustness of this transition was further

verified numerically for Jy 6= 0, exactly diagonalizing eq. (5.44) for small chains.

In the CSS-Klein and CSS-Stripe transitions, however, one must consider two

independent order parameters and from the overall discussion in Sec. 2.1, it follows

that they must be of first order or second order if fine-tuned.

5.3 CSS-Stripe transition and deconfined quan-

tum criticality

The last hanging fruit is the transition between the chiral spin state and the stripe

ordered phase. To do so, we will introduce a similar model respecting all symmetries,

where the chiralities are coupled in a slightly di↵erent manner:

H2 = Htet + J 0
x

X

j

X

l=1,2

�x

j,l,B
�x

j+1,l,A �Q2

X

j

X

l=1,2

Wj,lWj+1,l , (5.45)

see Fig. 5.5(a). The main properties of the model we have been studying so far are

also satisfied:

• At J 0
x
= 0, a chiral spin state is obtained exactly for any Q2 > 0. The argument



CHAPTER 5. PHASE TRANSITIONS OF THE ZIGZAG CHAIN 106

is exactly the same, the previously degenerate manifold is frozen out in the

ordered states and the low-energy spectrum is constructed from domain walls;

• The results derived in Sec. 4.4 also follow. Since Wj,1 = Wj,2, in the ground

state, it can be shown that the flux coupling renormalizes to �2Q2

P
j
⌧ y
j
⌧ y
j+1

at first order, and the exact same transition still occurs.

Figure 5.5: (a) Zigzag chain, where the triangular flux operators are now coupled preserving the
“triangle direction”, (b) E↵ective spin ladder model obtained in the anisotropic limit of eq. (5.45).

There is also a simple description in the anisotropic limit where Jx is taken to

be much larger than all other energy scales. By using the mapping in eqs. (5.7-5.18),

H2 = Jx
X

j

X

l=1,2

⇢x
j,l
+ J 0

x

X

j

�
Zj,1⇢

x

j+1,1Zj+1,1 + Zj,2⇢
x

j,2Zj+1,2

�
+ (5.46)

+ Jy
X

j

�
⇢y
j,1⇢

z

j,2Xj,2 + ⇢y
j,2⇢

z

j,1Xj,1

�
+ Jz

X

j

�
⇢z
j,2⇢

z

j+1,1 + ⇢z
j,1⇢

z

j,2Xj,1Xj,2

�

�Q2

X

j

X

l=1,2

Xj,lXj+1,l .

The same Jy, Jz ! 0 limit can be taken and perturbed. The e↵ective hamilto-

nian up to second order is written:

H2
e↵ = �

X

j

X

l=1,2

(J 0
x
Zj,lZj+1,l +Q1 Xj,lXj+1,l)� J?

X

j

Xj,1Xj,2 , (5.47)
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which is a distinct spin ladder from H1
e↵ , see Fig. 5.5(b). One can try to further

introduce the ⌘,q pseudospins in eqs.(5.30-5.33):

H2
e↵ = �J 0

x

X

j

(1 + qz
j
qz
j+1)⌘

z

j
⌘z
j+1 � J?

X

j

⌘x
j
�Q2

X

j

(1 + ⌘x
j
⌘x
j+1)q

x

j
qx
j+1 , (5.48)

Some of the transitions which were previously discussed also follow: For Q2 = 0,

there is an Ising transition, corresponding to KPM-Stripe, and an e↵ective XY chain

is found in the limit J? � Q1, J 0
x
, describing the CSS-KPM transition. However,

now the phase diagram is “assymetrical”: For J? = 0, it can be checked by analyzing

the limits that a CSS-Stripe transition occurs. We will be focused on the nature of

this transition.

In fact, note that for J? = 0, eq. (5.47) describes two decoupled XY chains,

suggesting a c = 2 transition between fourfold degenerate phases. For J? > 0, note

that the degeneracy of the chiral spin state is lifted to two, justifying the use of this

alternative model to study both phases. We will argue that for J? > 0, a c = 1

transition occurs. The insights from deconfined quantum criticality are manifested

in the low energy physics, and the role of emergent symmetries at the transition are

discussed.

We will weakly couple the XY chains, working at the limit Q1 ' J 0
x
� J?. The

Jordan-Wigner transformation in eqs. (3.41-3.43) are now redefined to be quantized

in the Y direction:

Xj,l = Bj,l(f
†
j,l
+ fj,l) , (5.49)

Zj,l = iBj,l(f
†
j,l
� fj,l) ; Bj,l =

Y

j0<j

(1� 2f †
j0,lfj0,l) , (5.50)

Yj,l = 2f †
j,l
fj,l � 1 . (5.51)

There are then two pairs of compact bosons from which we write the spin operators,

see App. A, as:
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Xj,l ⇠
r

2

⇡
cos
p
⇡✓l , (5.52)

Zj,l ⇠ �
r

2

⇡
sin
p
⇡✓l , (5.53)

Yj,l ⇠
2p
⇡
@x'l � (�1)x 2

⇡
sin
p
4⇡'l . (5.54)

where we have shifted ('l ! 'l +
p
⇡/4, ✓l +

p
⇡/4) compared to the expressions

derived in the Appendix. From eqs. (5.24-5.27), one can derive the action of the

bosonic fields under the symmetries:

T : {i! �i, ✓l ! ✓l +
p
⇡, 'l ! �'l} , (5.55)

R : {x! �x, ✓2 $ ✓1, '2 $ '1} , (5.56)

Kn=1,2 : {✓n ! �✓n,'n ! �'n} . (5.57)

Tx : {x! x+ 1, ✓l ! ✓l, 'l ! 'l +
p
⇡/2} . (5.58)

Therefore, in the continuum, the hamiltonian density of the decoupled chains must

be similar to eq. (3.64):

He↵ =
X

l=1,2

nvF
2
[(@x'l)

2 + (@x✓l)
2] + gl cos

⇣p
4⇡✓`

⌘o
+ · · · ., (5.59)

where vF / (J 0
x
+Q1). The bare value of the coupling in the cosine term is gl=1,2 /

(J 0
x
�Q1)/vF . In the field theory, coupling the two chains can be obtained by adding

the term, using eq.(5.52):

� J? Xj,1Xj,2 ⇠ g12 cos
p
⇡✓1 cos

p
⇡✓2 . (5.60)

where g12 / �J?/vF . As explained in Chapter 2, to compute the relevant low

energy states of a field theory, all symmetry-allowed terms must be included taken

into account in the renormalization group flow. The free (unperturbed) action is

given by:
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S0
e↵ =

X

l=1,2

Z
dxd⌧

nvF
2

⇥
(@x✓l)

2 + (@x'l)
2
⇤
� i@x✓l@⌧'l

o
. (5.61)

Some of the terms allowed by symmetry are:

Se↵ = S0
e↵ +

Z
d2
x {

X

l=1,2

[gl cos
p
4⇡✓l + �l cos

p
16⇡'l +

�Kl

2
(r✓l)2+

+
�K�1

l

2
(r'l)

2] + �12 cos
p
4⇡'1 cos

p
4⇡'2+ (5.62)

+ g12 cos
p
⇡✓1 cos

p
⇡✓2 + · · · } ,

where we have ignored terms with higher scaling dimensions and, since they are

not generated on the lattice, all the couplings �12,�l, �Kl are initially zero at high

energies (` = 0). Putting o↵ the analysis of vertex operators and the calculation of

the renormalization group flow in App. B, the results are as follows:

dg12
d`

=

✓
2� 1

4K1
� 1

4K2

◆
g12 � ⇡(g1 + g2)g12 , (5.63)

dgl
d`

=

✓
2� 1

K`

◆
gl �

⇡

4
g212 ; l = 1, 2 , (5.64)

dKl

d`
=
⇡2

4
g212 + 2⇡2(g21 + g22)� ⇡2�212K

2
l
� 8⇡2(�21 + �22)K

2
l
, (5.65)

d�12
d`

= (2�K1 �K2)�12 � ⇡(�1 + �2)g12 , (5.66)

d�l
d`

= (2� 4Kl)�l �
⇡

4
�212 ; l = 1, 2 , (5.67)

forming eight coupled di↵erential equations, which can be cut down to five if one

consider the flow of �+ = �1 + �2, K+ = K1 + K2 and g+ = g1 + g2, since the

corresponding antisymmetric combination does not flow due to R symmetry. The

equations are solved numerically. Remarkably, at low energies, by taking ` ! 1,

all vertex perturbations involving ' are irrelevant, that is, �1(` ! 1) = �2(` !
1) = �12(`!1) = 0, and thus can be ignored. The intuition from the spin model

follows in the gapped regimes, by taking any J? 6= 0: For J 0
x
su�cient larger than

Q1, gl=1,2 ⇠ O(1), while g12 ! 0�, representing the fourfold stripe phase with the

vacua:
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✓
✓1 =

p
⇡

2
, ✓2 =

p
⇡

2

◆
;

✓
✓1 =

3
p
⇡

2
, ✓2 =

3
p
⇡

2

◆
, (5.68)

✓
✓1 =

3
p
⇡

2
, ✓2 =

p
⇡

2

◆
;

✓
✓1 =

p
⇡

2
, ✓2 =

3
p
⇡

2

◆
.

(5.69)

On the other hand, for Q1 su�ciently larger than J 0
x
, we have both �l=1,2 and �12

as large and negative. By minimizing the cosine perturbations, we have a twofold

chiral spin state:

(✓1 = 0, ✓2 = 0) ; (✓1 =
p
⇡, ✓2 =

p
⇡) . (5.70)

Both phases can be checked by evaluating Xl and Zl. One may then expect a fixed

point in the renormalization group equations, corresponding to a phase transition.

Since both Luttinger parameters grow with the length scale, and we have K(` !
1)!1 a fixed point is found from the zeros of the beta function. Indeed, there is

a non-trivial zero, which depends on the specific value of the Luttinger parameter.

For Kl=1,2 !1, and denoting g⇤1 = g⇤2 = g⇤ at the fixed point:

g⇤ =
3

2⇡
' 0.4775 ; g⇤12 = �

r
2g⇤

⇡
' �0.5513 . (5.71)

It can be verified that the beta function vanishes in this limit. This corresponds to

a strongly interacting theory, whose properties are not clear from the perturbation

theory around the c = 2 fixed point. We will need another approach to understand

what happens at the phase transition.

First, note the absence of 'l=1,2 fields at low energies, since all deformations

related to it vanish. One can use T�duality to write the e↵ective theory with only

the ✓ boson. At criticality:

Le↵ ⇠
X

l=1,2

hv1
2
(r✓l)2 + g⇤ cos

⇣p
4⇡✓l

⌘i
+ g⇤12 cos

�p
⇡✓1

�
cos

�p
⇡✓2

�
, (5.72)

where v1 denotes the renormalized boson velocity at criticality. Define two O(2)

vectors:
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nl = (Xl, Zl) ⇠ (cos
�p

⇡✓l
�
, sin

�p
⇡✓l

�
) , (5.73)

which may be reminiscent of the Néel order parameter. In fact, we will draw some

similarities to the Néel-VBS transition. Locally, a rotation of the order parameter,

deep in a ordered phase, from a state to another corresponds to a domain wall.

More specifically, one can take the vacua of any of the phases in eqs. (5.68, 5.70),

and shift by
p
⇡: It generally will remain in the same phase, however, in a di↵erent

state. As was the case for the one dimensional Néel-VBS transition in Fig. 3.3, the

order parameter of the “dual phase” is generated in between, exemplified in Fig.

5.6.

Figure 5.6: An example of a domain wall in the CSS phase. The bold vectors denote the direction
of nl, CSS1,2 denotes the states with positive and negative chirality respectively, and Stripe(+,+)
denotes the (+,+) state depicted in Fig 4.10.

Let us make this statement concrete. From the algebra of dual bosons in eq.

(3.30), one can show that:

V †p
⇡,l
(y)✓l(x)Vp

⇡,l(y) = ✓l �
p
⇡H(x� y) ; Vp

⇡,l(y) = exp
⇥
i
p
⇡'l(y)

⇤
. (5.74)

That is, vertex operators of the dual boson correspond to the topological defects of

both phases, domain walls. This is equivalent to the monopole operator M, whose

profileration generates the VBS phase. However, in the CSS-Stripe transition, such

operators are irrelevant on both sides of the transition. As one would expect, there

is a charge associated to such domain walls, generated from the winding of the ✓

bosons:

jl =
1

2
p
⇡
ẑ ⇥r✓l ! Ql =

1p
⇡

Z
dx @x✓̃l , (5.75)
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where we have defined ✓̃l = ✓l/2 and '̃l = 2'l. As defined, Vp
⇡,l|Qli = |Ql � 1i.

Invoking bosonization, one can introduce chiral fermions  ̃l = ( ̃L,l,  ̃R,l)T related

to this domain wall as:

 ̃R/L,l ⇠
1p
2⇡

exp[�i
p
⇡
⇣
'̃l ⌥ ✓̃l

⌘
] , (5.76)

where the winding charges now corresponds to the fermionic charges, if properly

normalized in units of e1, e2:

Ql = el

Z
dx  ̃†

l
 ̃l . (5.77)

The reasoning behind defining two charge units will be become clear later. In terms

of the ✓̃ boson:

Le↵ ⇠
X

l=1,2


ṽ1
2
(r✓̃l)2 + g⇤ cos

⇣p
16⇡✓̃l

⌘�
+g⇤12 cos

⇣p
4⇡✓̃1

⌘
cos

⇣p
4⇡✓̃2

⌘
. (5.78)

We want a dual description of this transition in terms of the “domain wall” fermions

 ̃. By using the bosonization dictionary in eqs. (3.36-3.39) for  L/R !  ̃L/R, '! ✓̃,

✓ ! '̃,

Xj,l ⇠ cos 2
p
⇡✓̃l ⇠  ̃†

l
�x  ̃l , (5.79)

Zj,l ⇠ sin 2
p
⇡✓̃l ⇠  ̃†

l
�y  ̃l , (5.80)

Yj,l ⇠ @x'̃l ⇠ � ̃†
l
�z  ̃l . (5.81)

there are “low energy constraints” on this fermion: first, physical states at low

energies must satisfy hYj,li = 0, from which we add a delta functional in the par-

tition function of the form
Q

l=1,2 �
⇣
 ̃†

l
�z  ̃l

⌘
. A second constraint comes from

the fact that domain wall operators are irrelevant: One can fix a charge sector
Q

l=1,2 �
⇣
 ̃†

l
 ̃l �Ql/L

⌘
, where L spatial length. As done in Sec. 2.3 for the CP1

model, the constraints can be applied by introducing a gauge field a:
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�L =
X

l=1,2

h
al2el

¯̃ �2 ̃+ al1el
¯̃ �1 ̃

i
, (5.82)

where the � are the same as defined in Chapter 3, satisfying the euclidean Cli↵ord

algebra in eq. (3.12). The presence of the gauge fields can also be understood as a

consequence of a “parton construction”: the physical operators, described by eqs.

(5.79-5.81) has a gauge redundancy  ̃l ! eiel↵l(x) ̃l, whose U(1) gauge field needs

to be introduced transforming as a
l ! a

l + r↵l, In order to have gauge invariant

dynamics, both terms above needs to be introduced [102–104].

Then by the bosonization dictionary, at the transition:

Le↵ ⇠
X

l=1,2


ṽ1
2
(r✓̃l)2 + g⇤ cos

⇣p
16⇡✓̃l

⌘�
+ g⇤12 cos

⇣p
4⇡✓̃1

⌘
cos

⇣p
4⇡✓̃2

⌘

⇠
X

l=1,2

⇢
iṽ1

¯̃ l� · (r� iela
l) ̃l + g⇤

⇣
 ̃†
R,l
 ̃L,l

⌘2

+ h.c.

��
+ (5.83)

+ g⇤12

⇣
¯̃ 1�1 ̃1

⌘⇣
¯̃ 2�1 ̃2

⌘
,

which is still a strongly coupled theory: the order O(g⇤, g⇤12) terms describes four-

fermion scattering tuned to a non-trivial critical point. First, consider a mean-field

approach, in the gapped phases. The hamiltonian density is written as:

He↵ ⇠
X

l=1,2

h
iṽ1 ̃

†
l
�z@x ̃l ++g(:  ̃†

R,l
 ̃L,l ::  ̃

†
R,l
 ̃L,l : +h.c)

i

+ g12 : ( ̃
†
1�

x ̃1) :: ( ̃
†
2�

x ̃2) : , (5.84)

where we have properly normal-ordered : O := O�hOi the quadratic terms. A mean-

field description is found by ignoring quartic terms and defining Mx

l
= h ̃†

l
�x li and

M z

l
= h ̃†

l
�y li, we have:

HMF
CSL�Stripe =

X

l=1,2

 ̃†
l

⇥
i�z@x � (gMx

l
+ g12M

x

�l
)�x + gM z

l
�y
⇤
 ̃l + "(0) , (5.85)

"(0) =
g

2

X

`

⇥
(Mx

l
)2 � (M z

l
)2)
⇤
+ g12M

x

1M
x

2 , (5.86)
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where Mx

�1 = M2, Mx

�2 = x1. By minimizing the ground state energy to find

(Mx

1 ,M
x

2 ,M
z

1 ,M
z

2 ), the mean-field spectrum indeed describes both phases correctly,

including degeneracies. This is analogous to the mean-field result discussed at the

Néel-VBS transition in one dimension in section 3.2. Corresponding domain walls

trap the fermions in zero modes, which are the elementary excitations. At the transi-

tion however, taking Mx

l
,M z

l
! 0 results in two chiral fermions, with central charge

c = 2: This is not surprising, since it comes from a mean-field result. However, as

discussed, the fermions are charged under a gauge field. This discussion resembles

the easy-plane Néel-VBS transition in two dimensions, where the fermionic degrees

of freedom play the role of  1/2, responsible for creating topological excitations in

the Néel phase. Moreover, the continous criticality in DQC is reliant on the gauge

field dynamics: Inspired by this case, one then adds dynamics to the gauge field:

Le↵ ⇠
X

l=1,2

iṽ1
¯̃ l� · (r� iela

l) ̃l + L4 �
1

G2

X

⇤
W⇤ , (5.87)

where L4 contains all four-fermion terms and W⇤ are the Wilson lines on the ele-

mentary plaquettes. There are four terms which contribute to this sum:

X

⇤
W⇤ =

X

l

cos(@2a
l

1� @1al2) + cos(a12� a22� @2ay) + cos(a11� a21� @1ay) , (5.88)

where ay is the gauge field component in the links between the chains; in our case,

ay = 0. Then, defining a = a
1+a

2 and a
� = a

1�a2, the antisymmetric combination

is gapped out by the last two cosine terms. The first terms can be safely expanded

out, due to the absence of monopoles. One has then:

Le↵ ⇠
X

l=1,2

iṽ1
¯̃ l� · (r� iela) ̃l + L4 +

1

2G2
(r⇥ a) , (5.89)

which, for L4 = 0, corresponds to two fermionic flavors of 1 + 1 quantum electrody-

namics, denoted by Nf = 2 QED2. This theory can be exactly solved, and we are

interested in the infrared dynamics where G2 ! 1. [103, 104]. Gauge fix a2 = 0

and integrate out a1, using techniques from Gaussian integration:
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Z
Da1 exp

(
�
Z

x2x

"
X

l

⇣
¯̃ li� ·r ̃l � a1el

¯̃ l�
1 ̃l

⌘
+

1

2G2
(@2a1)

2

#)

⇠ exp{�
Z

d2
x

"
1

2

X

`

(@µ✓̃`)
2

#
+ (5.90)

�G2

Z
dx1dx

0
2dx2|x2 � x0

2|
"
X

l

el(@2✓̃l)

#"
X

l0

el0(@20 ✓̃l0)

#
} ,

where we have bosonized again in the second line. Redefine the bosonic modes in a

O(2) rotation:

✓̃s =
e1✓̃1 + e2✓̃2p

e21 + e22
; ✓̃a =

e1✓̃1 � e2✓̃2p
e21 + e22

, (5.91)

Let e = |el|. We have two choices, e1 = ±e2 = e. The lagrangian is then written,

including the terms from L4:

Le↵ ⇠
X

�=a,s


ṽ1
2
(r✓̃�)2 +

g12
2

cos
⇣p

8⇡✓̃�
⌘�

+2G2e2(✓̃s)
2+2g cos

⇣p
8⇡✓̃a

⌘
cos

⇣p
8⇡✓̃s

⌘
,

(5.92)

In the strong coupling limit, G2 ! 1, the symmetric mode is gapped. Therefore,

at first order, one can pin down ✓̃s in the action and obtain an e↵ective sine-Gordon

theory:

Le↵ ⇠
ṽ1
2
(@µ✓̃a)

2 +M(g, g12) cos 2
p
2⇡✓̃a , (5.93)

where M = g12/2 + 2gC, and C ⇠ O(1) is a non-universal constant. This indeed

describes both phases:

• e1 = �e2: This corresponds to states where ✓̃1 = ✓̃2. For M � 0, (large and

positive) there are two degenerate states corresponding to Z1 = Z2 = 1 and

Z1 = Z2 = 1, and for M ⌧ 0 (big and negative), we have the CSS ground

states X1 = X2 = ±1;
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• e1 = e2: This corresponds to ✓̃1 = �✓̃2. For M � 0, there are two states

Z1 = �Z2 = 1, and Z1 = �Z2 = �1. For M ⌧ 0, there are the usual CSS

ground states.

For M(g⇤, g⇤12) = 0, we have a free compact boson at the transition. We claim

that this is the critical point found in eq. (5.71). Both couplings g⇤, g⇤12 are O(1) and

oppositely signed, and the corresponding perturbations lead to the correct phases

in the infrared. Therefore, we conclude that the CSS-Stripe transition is a c = 1

transition. By computing the entanglement entropy in DMRG, for the spin ladder

model, this result was found for any J? > 0. In the original zigzag chain model,

the large correlation length at the transition prevented a good numerical estimate

of the central charge.

Physically, this means that the “dual theory” of domain walls is as good as

original variables, and is a good description at the transition. This point is in

complete agreement with the DQC phenomenology. Note also that the critical region

also has an emergent U(1)⇥U(1) symmetry structure, as the one-dimensional Néel-

VBS transition or FM-VBS transitions. In all those cases, the topological excitations

play an important role and generically become massless at the transition. Alas, one

may distance themselves to naming the CSS-Stripe transition as “deconfined”, due

to the confining nature of gauge fields in one dimension: In our example, our critical

boson at the CSS-Stripe transition would not exist if one coupled only one fermionic

flavor to the U(1) gauge field, and the theory is completely gapped. One can for

example, compute the photon propagator and verify the shift of the massless pole

to a massive pole [104]

However, those examples still remain as the best analogies to deconfined critical-

ity in one dimension, due to the existence of this “charged domain wall” description.

This was explored in [32], where the wide range of tools in one dimension was used to

show that a c = 1 FM-ordered transition can be cast as a gauge theory with bosonic

or fermionic matter. All descriptions depend on the symmetry properties of domain

walls and how they must be charged. In our model, the continuum limit suggested

the symmetry properties of the domain wall, and the transformation properties of

other lattice symmetries were not as important.



Chapter 6

Conclusion

In this thesis, we presented a one-dimensional chiral spin state and discussed its

perturbations. We found a family of continuous phase transitions, and the corre-

sponding universality classes were computed. We discussed how the properties of

domain walls can generate DQC-like behaviour in one dimension, supporting pre-

vious arguments in the literature [5, 32]. Other symmetry-breaking phases which

were found are also of interest: The stripe phase supports the numerical results on

an analogue model in two dimensions [95] and the presence of a Klein paramagnet

was shown confirming previous conjectures [88]. Furthermore, evidence for the ro-

bustness of such continuous transitions was shown, by working at di↵erent energy

scales.

There are two lines of further research questions related to di↵erent aspects of

our work. From the perspective of model building:

• It is interesting to ask about models with SU(2) spin symmetry. There is

evidence of chiral spin states in one dimension when four-spin interactions

are introduced [37, 38], but further theoretical understanding of the nature of

the transitions is still lacking. Spin symmetry allows us to construct lattice

dualities between the chiralities and spin operators, which may aid this en-

deavor [105]. It is an open question if chiral phases can exist if only two spin

interactions are constructed;

• There is an exactly solvable two-dimensional model exhibiting similar phe-

nomenology to the tetrahedral chain, known as the Yao-Kivelson model [106],

where two chiral spin liquid phases, a topological and a trivial one, are sepa-

rated by a continuous phase transition. It remains to see if similar methods,

117



CHAPTER 6. CONCLUSION 118

such as the pseudspin approach, can be applied in the two-dimensional setting

to study possible perturbations and unconventional phase transitions.

There are also questions relating to the bigger picture of the classification of

quantum phases and transitions in one dimension:

• In one dimension there are Lieb-Schultz-Mattis (LSM) theorems and its gen-

eralizations [107–110], which state that a translationally-invariant spin chain

with a given symmetry group G (with a projective action on the half-spin de-

grees of freedom), the ground state must be either gapless or in a symmetry-

breaking state, and no unique disordered ground state can exist. First pro-

posed by LSM for G = U(1), it was shown that it is also valid for G = T or

G = Z2⇥Z2. This is satisfied by the model on eq.(3.66), and explains why the

phase diagram was composed only by symmetry-breaking phases. However,

both the zigzag chain models in eqs.(4.30,5.45) and the simpler anisotropic

counterparts in eqs.(5.23, 5.47) does not satisfy such criteria, since it contains

a larger unit cell. In both numerical and analytical analysis, no disordered

state was found. It suggests a LSM-type constraint for spin ladders;

• Our model adds to the list of examples of deconfined transitions due to do-

main walls. As highlighted in [32], ordered-ordered transitions in one dimen-

sion seems to have generally this structure. On a bigger goal, one may then

ask if there is a combination of methods in order to “bootstrap” [111] one-

dimensional deconfined quantum criticality in a model-independent way, since:

(1) The topological nature of domain walls could not become simpler, since

there is only one non-trivial homotopic classification ⇡1(S1) = Z [55], (2)

imposing conformal invariance in the transition may be used to classify the

deformations, (3) topological e↵ects, such as instantons and what are known

as Wess-Zumino-Witten (WZW) for continuous groups are well classified in

one dimension [17], (4) If a LSM constraint is present, recent works have

showed that this implies that the low-energy field theory must carry a t’Hooft

anomaly [112–114], further constraining what field theories are physical. This

approach was used to understand possible transitions without explicit mod-

els in two-dimensional quantum systems [115]. A combination of some (or

all) of this techniques may shed light on what ordered-ordered transitions are

possible in spin chains and ladders.



Appendix A

Bosonization of spin operators

In this appendix, we will combine the Jordan-Wigner transformation with the bosoniza-

tion of chiral fermions, obtaining an explicit formula of lattice spin operators in terms

of the dual bosons. Assume the quantization axis in the x axis as eqs.(3.41-3.43)

assuming that the fermions can be expanded in chiral modes as eq.(3.59).

At the continuum, operators are defined as excitations of some ground state,

or vacuum. For the Jordan-Wigner fermions, this corresponds to half-filling, where

hc†
i
cii = 1/2. To prevent single-point singularities, one must take the continuum

limit of normal ordered operators, defined as : O := O � hOi. Then, eq.(3.41) is

rewritten as:

�x

j
' 2 : c†

j
cj : (A.1)

⇠: ⇢R : + : ⇢L : +
⇣
e�i2kF x :  †

R
 L : +h.c

⌘
⇠ 2


1p
⇡
@x'+

1

⇡
cos(
p
4⇡'+ 2kFx)

�

⇠ 2


1p
⇡
@x'+

(�1)x
⇡

cos
p
4⇡'

�
,

where we have used the bosonization dictionary in eqs.(3.36, 3.37, 3.38), and kF =

⇡/2. To obtain the continuum expression for other components requires a subtle

analysis of fusing single-point operators. For example, we will need the following

identity:

eAeB = e
1
2 [A,B]eA+B , (A.2)
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which is true for [A,B] 2 C. The continuum of the string operator can be written

as:

Bj = exp

 
i⇡
X

j0<j

nj0

!
(A.3)

⇠ exp

✓
i⇡

Z
x

�1
dx0 [: ⇢R(x

0) : + : ⇢L(x
0) : +1/2]

◆
⇠ eikF xei

p
⇡'(x) .

We now need to specify a point-splitting operation. That is, let us define:

lim
x!y

O(x)O(y) :=: O(x)O(x� ✏) : , (A.4)

and A±(x) = c†(x)± c(x). By eqs.(3.41,3.42):

�z

j
⇠: B(x)A+(x� ✏) : (A.5)

⇠ 1p
2⇡

: eikF (x�✏)ei
p
⇡'(x�✏){e�ikF xei

p
⇡[✓(x)�'(x)] + eikF xei

p
⇡[✓(x)+'(x)]

+ eikF xe�i
p
⇡[✓(x)�'(x)] + e�ikF xe�i

p
⇡[✓(x)+'(x)]} : ,

using eq.(A.2,3.30) with H(x! 0) = 1/2, the fusion rule is derived:

: ei
p
⇡'(x�✏)ei

p
⇡�1[✓(x)+�2'(x)] := e�i⇡�1/4 exp

�
i
p
⇡ [�1✓(x) + (�1�2 � 1)'(x)]

 
,

(A.6)

then, taking ✏! 0 in the full expression, we arrive at:

�z

j
⇠
r

2

⇡
cos

p
⇡

✓
✓ �
p
⇡

4

◆�
+

r
2

⇡
(�1)x cos

p
⇡

✓
✓ � 2'` �

p
⇡

4

◆�
. (A.7)

By using the same identities, the product limx!y B(x)A�(y) can be worked out and

one derives:
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�y

j
⇠ �

r
2

⇡
sin

p
⇡

✓
✓ �
p
⇡

4

◆�
�
r

2

⇡
(�1)x sin

p
⇡

✓
✓ � 2'` �

p
⇡

4

◆�
. (A.8)



Appendix B

Vertex operators and RG flow

In this appendix, we will compute OPEs of vertex operators and the correspond-

ing scale dimensions. The results are then used to compute the one-loop RG flow

equations from the action in eq. (5.62).

B.1 Operator product expansion of vertex oper-

ators

Consider the free action in eq.(3.27), where the velocity is made explicit and defined

in euclidean time:

SLL !
Z

d⌧dx

⇢
v

2


1

2K
(@x✓)

2 +
K

2
(@x')

2

�
� i@x✓@⌧'

�
. (B.1)

We want to study the OPEs of the charged vertex operators V↵, Ṽ� in eqs.(3.31,

3.32). We also use the expressions of the shift currents j✓
s
= r✓, j'

s
= r'. First, we

must compute the logarithmically divergent correlations of the free bosons in 1 + 1

dimensions. Let x = (⌧, x) denote as a spacetime point. Consider the regulated

correlation functions:

G'(x) = h'(x)'(0)i � h'(0)2i , (B.2)

G✓(x) = h✓(x)✓(0)i � h✓(0)2i , (B.3)
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introduce momentum modes:

'(x) =

Z
dkd!

(2⇡)2
e�i(kx+!⌧)'(k) . (B.4)

The action can be written as a quadratic form:

SLL =
1

2

Z
dkd!

(2⇡)2

⇣
✓(�k) '(�k)

⌘
A(k)

 
✓(k)

'(k)

!
, (B.5)

from which the momentum-space propagator is derived:

A�1(k) =

 
h✓(�k)✓(k)i h✓(�k)'(k)i
h'(�k)✓(k)i h'(�k)'(k)i

!
=

 
K

�1

vk2+v�1!2
�i!

kv(vk2+v�1!2)
�i!

kv(vk2+v�1!2)
K

vk2+v�1!2

!
.

(B.6)

Let us compute then eq.(B.2), imposing a cuto↵ in k = (k, v�1!):

G'(x) = K

Z
d!dk

(2⇡)2
e�i(kx+!⌧) � 1

vk2 + v�1!2
= K

Z

|k|<1/a

d2
k

(2⇡)2
e�ik·x � 1

|k|2

' �K

2⇡
ln

✓
|x|
2a

◆
= �K

2⇡
ln |x| . (B.7)

where we choose to measure lengths in units of 2a. Therefore:

G'(x) = �
K

2⇡
ln |x| , (B.8)

G✓(x) = �
1

2⇡K
ln |x| , (B.9)

where a similar computation gives the second correlation. OPEs must satisfy the

selection rules of the symmetries of the CFT. In our case, it is manifested as a

U(1)' ⇥ U(1)✓ symmetry, organized into a Z⇥ Z structure labelling the irreducible

representations in terms of the charges (Q', Q✓). As mentioned, V↵ is charged in the

(↵, 0) representation and Ṽ� in the (0, �) rep. Schematically, this already constraint
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the OPEs. Let �↵, �̃� be the scaling dimensions of V↵ and Ṽ�, respectively. From

the expression of the correlations, one can take derivatives to show that the scaling

dimension of the currents are 1. Then, one must have:

V↵(x) · V↵0(y) ⇠ 1

|x� y|�↵+�↵0��↵+↵0
V↵+↵0 + �↵+↵0,0

#

|x� y|�↵+�↵0�2
(r')2 + · · · ,

(B.10)

Ṽ�(x) · Ṽ�0(y) ⇠ 1

|x� y|�̃�+�̃�0��̃�+�0
Ṽ�+�0 + ��+�0,0

#

|x� y|�̃�+�̃�0�2
(r✓)2 + · · · ,

(B.11)

where # denotes numerical prefactors, corresponding to the structure constants,

which will be computed 1. Since we have this Hilbert space structure where vertex

operators are defined, one may use canonical quantization (correlations of vertex

operators can also be computed using the path integral formalism ). To have well-

behaved vertex operators, consider the normal-ordered product, which can be safely

expanded:

: V↵(x) :: V↵0(y) :=
1X

n,m=0

(i↵)n

n!

(i↵0)m

m!
: 'n(x) :: 'm(y) : , (B.12)

we will only need to evaluate this expression for ↵ = ��. Furthermore, we will also

only need the terms:

: V↵(x) :: V�↵(y) : =
1X

n,m=0

(↵2)n

n!
h'(x)'(y)in


1 + ↵2 : '(x)'(y) : �↵

2

2

�
: '2(x) : + : '2(y) :

�
+ · · ·

�
,

= exp
�
↵2h'(x)'(y)i

� 
1� ↵2

2
: ('(x)� '(y))2 : + · · ·

�
,

(B.13)

where we have used Wick’s theorem to simplify the terms. The relation between ver-

tex operators and its normal ordered counterpart, as can also be shown by expanding

the exponential is a “screening factor”:

1the absence of a prefactor in the “fusion term” comes from imposing that correlation function
of scaling operators follow eq. (2.32)
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V↵(x) = e�↵
2
/2h'2(0)i : V↵(x) : , (B.14)

therefore:

V↵(x)V�↵(y) = exp
�
↵2G'(x)

� 
1� ↵2

2
: ('(x)� '(y))2 : + · · ·

�
,

=
1

|x� y|↵2K/2⇡


1� ↵2

2
: ('(x)� '(y))2 : + · · ·

�
, (B.15)

to obtain the OPE, one must take x = y ! R = (x + y)/2. Then, for example,

'(x) ⇠ '(R) + 1
2(x� y) ·r'. Then we have:

V↵(x) · V�↵(y) ⇠
1

|x� y|↵2K/2⇡
+

↵2/2

|x� y|↵2K/2⇡�2
(r')2 + · · · , (B.16)

Ṽ�(x) · Ṽ�0(y) ⇠ 1

|x� y|�2/2⇡K
+

�2/2

|x� y|�2/2⇡K�2
(r✓)2 + · · · , (B.17)

where we read the scaling dimensions:

�↵ =
↵2K

4⇡
; �̃� =

�2

4⇡K
, (B.18)

and also the missing constants in eqs. (B.10,B.11):

V↵(x) · V↵0(y) ⇠ 1

|x� y|�↵↵0K/2⇡
V↵+↵0 +

↵2/2

|x� y|↵2K/2⇡�2
(r')2 + · · · , (B.19)

Ṽ�(x) · Ṽ�0(y) ⇠ 1

|x� y|���0/2⇡K
Ṽ�+�0 +

�2/2

|x� y|�2/2⇡K�2
(r✓)2 + · · · , (B.20)

in the above identities, operators of higher scaling dimensions are ignored, since they

are generally irrelevant.

B.2 Renormalization group equations

In eq. (5.62), all deformations to the fixed point can be written as vertex operators:
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O✓l
⌘ cos

p
4⇡✓l =

1

2
(Ṽp

4⇡,l + Ṽ�
p
4⇡) , (B.21)

O'l
⌘ cos

p
16⇡'l =

1

2
(Vp

16⇡,l + V�
p
16⇡,l) , (B.22)

O✓12 ⌘ cos
p
⇡✓1 cos

p
⇡✓2

=
1

4

⇣
Ṽp

⇡,1Ṽp
⇡,2 + Ṽ�

p
⇡,1Ṽ�

p
⇡,2 + Ṽ�

p
⇡,1Ṽp

⇡,2 + Ṽp
⇡,1Ṽ�

p
⇡,2

⌘
, (B.23)

O'12 ⌘ cos
p
4⇡'1 cos

p
4⇡'2

=
1

4

�
Vp

4⇡,1V
p
4⇡,2 + V�

p
4⇡,1V�

p
4⇡,2 + V�

p
4⇡,1V

p
4⇡,2 + Vp

4⇡,1V�
p
4⇡,2

�
. (B.24)

with coupling constants gl,�l, g12,�12, respectively, and V↵,l = exp[i↵'l], Ṽ�,l =

exp[i�✓l] . The corresponding scaling dimensions are:

�✓l
=

1

Kl

, (B.25)

�'l
= 4Kl , (B.26)

�✓12 =
1

4K1
+

1

4K2
, (B.27)

�'12 = K1 +K2 . (B.28)

(B.29)

The one-loop contribution to the beta function, described in eq.(2.36), is com-

puted by evaluating the operator product expansion of the above operators. Equipped

with the results of the last section, one can compute each Oi cdotOj, aided by the

following identity: If V1, V2, V3, V4 are vertex operators, the OPE decomposes as

[V1(x)V2(x)] · [V3(y)V4(y)] ⇠ [V1(x)V3(y)] · [V2(x)V4(y)]+ [V2(x)V3(y)] · [V1(x)V4(y)]

(B.30)

which is a consequence of Wick’s theorem. We will state the results:
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O✓1(x)O✓12(y) = O✓2(x)O✓12(y) ⇠
1

2

1

|x� y| : cos
p
⇡✓1 cos

p
⇡✓2 : , (B.31)

O✓12(x)O✓12(y) ⇠
X

l=1,2


1

4
: cos

p
4⇡✓l : �

1

2

⇣⇡
4

⌘
|x� y| : (r✓l)2 :

�
, (B.32)

O✓1(x)O✓1(y) ⇠ �
1

2
(2⇡) (r✓1)2 , (B.33)

O✓2(x)O✓2(y) ⇠ �
1

2
(2⇡) (r✓2)2 , (B.34)

O'1(x)O'12(y) = O'2(x)O'12(y) ⇠
1

2

1

|x� y|4 : cos
p
4⇡'1 cos

p
4⇡'2 : , (B.35)

O'12(x)O'12(y) ⇠
X

l=1,2


1

4
: cos

p
16⇡'l : �

1

2
(⇡) |x� y|2 : (r'l)

2 :

�
, (B.36)

O'1(x)O'1(y) ⇠ �
1

2
(8⇡)

: (r'1)2 :

|x� y|6 , (B.37)

O'2(x)O'2(y) ⇠ �
1

2
(8⇡)

: (r'2)2 :

|x� y|6 . (B.38)

From the above expression, the coe�cients are extracted:

c(�1,�12;�12) = c(�12,�1;�12) = c(�2,�12;�12) = c(�12,�2;�12) =
1

2
, (B.39)

c(�12,�12;�1) = c(�12,�12;�2) =
1

4
, (B.40)

c(�12,�12;K1) = c(�12,�12;K2) = �⇡ , (B.41)

c(�1,�1;K1) = c(�2,�2;K2) = �8⇡ , (B.42)

c(g1, g12; g12) = c(g12, g1; g12) = c(g2, g12; g12) = c(g12, g2; g12) =
1

2
, (B.43)

c(g12, g12; g1) = c(g12, g12; g2) =
1

4
, (B.44)

c(g12, g12;K
�1
1 ) = c(g12, g12;K

�1
2 ) = �⇡

4
, (B.45)

c(g1, g1;K
�1
1 ) = c(g2, g2;K

�1
2 ) = �2⇡ , (B.46)

appearing as cijk in eq.(2.36). Noting that:

dK�1
l

d`
= � 1

K2
l

dKl

d`
! c(· · · , · · · , K�1

l
) = �K2

l
c(· · · , · · · , Kl) , (B.47)
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one can substitute Sd=2 = 2⇡, the scaling dimensions in eqs.(B.25-B.28) and the

OPE coe�cients in eqs.(B.39-B.46) in eq.(2.36) and eqs.(5.63-5.67) are derived, as

promised.
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[85] Hendrik Antoon Kramers. Théorie générale de la rotation paramagnétique

dans les cristaux. Proc. Acad. Amst, 33(6), 1930.

[86] Hal Tasaki. Physics and mathematics of quantum many-body systems. Springer

Nature, 2020.

[87] Zohar Nussinov and Jeroen Van Den Brink. Compass models: Theory and

physical motivations. Reviews of Modern Physics, 87(1):1, 2015.

[88] Itamar Kimchi and Ashvin Vishwanath. Kitaev-heisenberg models for iridates

on the triangular, hyperkagome, kagome, fcc, and pyrochlore lattices. Phys.

Rev. B, 89:014414, Jan 2014.

[89] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-uspekhi,

44(10S):131, 2001.



BIBLIOGRAPHY 136

[90] Ching-Kai Chiu, Je↵rey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu.

Classification of topological quantum matter with symmetries. Rev. Mod.

Phys., 88:035005, Aug 2016.

[91] Michael Wimmer. Algorithm 923: E�cient numerical computation of the

pfa�an for dense and banded skew-symmetric matrices. ACM Transactions

on Mathematical Software (TOMS), 38(4):1–17, 2012.

[92] Fabio L. Pedrocchi, Stefano Chesi, and Daniel Loss. Physical solutions of the

kitaev honeycomb model. Phys. Rev. B, 84:165414, Oct 2011.

[93] Kazuya Shinjo, Shigetoshi Sota, Seiji Yunoki, Keisuke Totsuka, and Takami

Tohyama. Density-matrix renormalization group study of kitaev–heisenberg

model on a triangular lattice. Journal of the Physical Society of Japan,

85(11):114710, 2016.

[94] Michael Becker, Maria Hermanns, Bela Bauer, Markus Garst, and Simon

Trebst. Spin-orbit physics of j = 1
2 mott insulators on the triangular lattice.

Phys. Rev. B, 91:155135, Apr 2015.

[95] P. A. Maksimov, Zhenyue Zhu, Steven R. White, and A. L. Chernyshev.

Anisotropic-exchange magnets on a triangular lattice: Spin waves, acciden-

tal degeneracies, and dual spin liquids. Phys. Rev. X, 9:021017, Apr 2019.

[96] Steven R White. Density matrix formulation for quantum renormalization

groups. Physical review letters, 69(19):2863, 1992.

[97] Steven R White. Density-matrix algorithms for quantum renormalization

groups. Physical review b, 48(14):10345, 1993.
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