Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/12713
Título: Estudo e desenvolvimento de um capacitor eletrolítico de nióbio
Autor(es): Cerniak, Samuel Nogueira
Palavras-chave: Capacitor eletrolítico de nióbio;Sinterização;Oxidação anódica;Niobium electrolytic capacitor;Sintering;Anodic oxidation
Data do documento: 11-Mai-2012
Editor: Universidade Federal do Rio Grande do Norte
Citação: CERNIAK, Samuel Nogueira. Estudo e desenvolvimento de um capacitor eletrolítico de nióbio. 2012. 121 f. Dissertação (Mestrado em Processamento de Materiais a partir do Pó; Polímeros e Compósitos; Processamento de Materiais a part) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
Resumo: It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment
metadata.dc.description.resumo: Procura-se encontrar uma alternativa para os atuais capacitores eletrolíticos de tântalo existentes no mercado, devido ao seu alto custo. O nióbio é um substituto em potencial, pois ambos pertencem ao mesmo grupo da tabela periódica e devido a isso têm várias propriedades físicas e químicas semelhantes. O nióbio apresenta diversas aplicações tecnologicamente importantes e o Brasil possui as maiores reservas mundiais, em torno de 96%. Existe inclusive nióbio contido em reservas de tantalita e columbita no Rio Grande do Norte. Esses capacitores eletrolíticos possuem alta capacitância especifica, ou seja, podem armazenar altas energias em volumes pequenos comparados a outros tipos de capacitores. Esse é o principal atrativo desse tipo de capacitores, pois existe uma crescente demanda na produção de capacitores com capacitância especifica cada vez mais alta, isso devido à miniaturização de diversos aparelhos como GPSs, televisores, computadores, celulares e muitos outros. A rota de produção do capacitor foi feita através da metalurgia do pó. O pó de nióbio inicial fornecido pela EEL-USP foi primeiramente caracterizado através de DRX, MEV, granulometria a laser e FRX, para então ser peneirado em três granulometrias, 200, 400 e 635mesh. Os pós foram então compactados e sinterizados em 1350, 1450 e 1550ºC usando dois patamares, 30 e 60min. A sinterização é uma das partes mais importantes do processo, pois afeta propriedades como porosidade e limpeza superficial das amostras, que afetaram grandemente a qualidade do capacitor. As amostras sinterizadas sofreram então um processo de oxidação anódica, que criou um filme fino de pentóxido de nióbio sobre toda a superfície porosa da amostra, este filme é o dielétrico do capacitor. As variáveis do processo de oxidação influenciaram no desempenho do filme e conseqüentemente do capacitor. As amostras foram caracterizadas através de medidas elétricas de capacitância, fator de perdas, ESR, densidade relativa, porosidade e área superficial. Após as caracterizações foi feito um tratamento térmico de recozimento em atmosfera de ar a 260ºC por 60min. Após esse tratamento foram feitas novamente as medidas elétricas. A granulometria do pó e a sinterização afetaram a porosidade e por sua vez a área especifica das amostras. Quanto maior a área do capacitor, maior sua capacitância. O pó que apresentou capacitância mais alta foi o com menor granulometria. Temperaturas e tempos de sinterização maiores causaram amostras com área superficial menores, porém, por outro lado a limpeza superficial de impurezas foi maior para esses casos, de maneira que deve ser feito um balanceamento entre o ganho que se obtém com a limpeza das impurezas e a perda com a diminuição da área especifica. Os melhores resultados foram obtidos para a temperatura de 1450ºC/60min. A influência do tratamento térmico de recozimento no fator de perdas e na ESR não seguiu um padrão bem definido, pois seus valores aumentaram em alguns casos e diminuíram em outros. Os resultados mais interessantes devido ao tratamento térmico foram com relação à capacitância, que apresentou um aumento para todas as amostras após o tratamento
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/12713
Aparece nas coleções:PPGCEM - Mestrado em Ciência e Engenharia de Materiais

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
SamuelNC_DISSERT.pdf3,11 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.