Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/jspui/handle/123456789/15129
Title: Algoritmo Q-learning como estratégia de exploração e/ou explotação para metaheurísticas GRASP e algoritmo genético
Authors: Lima Júnior, Francisco Chagas de
Keywords: MetaheurísticaGRASP;Algoritmos genéticos;AlgoritmoQ-learning;Problema do caixeiro viajante;GRASP metaheuristic;Genetic algorithm;Q-learning algorithm;Travelling salesman problem
Issue Date: 20-Mar-2009
Publisher: Universidade Federal do Rio Grande do Norte
Citation: LIMA JÚNIOR, Francisco Chagas de. Algoritmo Q-learning como estratégia de exploração e/ou explotação para metaheurísticas GRASP e algoritmo genético. 2009. 140 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2009.
Portuguese Abstract: Técnicas de otimização conhecidas como metaheurísticas têm obtido sucesso na resolução de problemas classificados como NP - Árduos. Estes métodos utilizam abordagens não determinísticas que geram soluções próximas do ótimo sem, no entanto, garantir a determinação do ótimo global. Além das dificuldades inerentes à complexidade que caracteriza os problemas NP-Árduos, as metaheurísticas enfrentam ainda o dilema de exploração/explotação, que consiste em escolher entre intensificação da busca em uma região específica e a exploração mais ampla do espaço de soluções. Uma forma de orientar tais algoritmos em busca de melhores soluções é supri-los de maior conhecimento do problema através da utilização de um agente inteligente, capaz de reconhecer regiões promissoras e/ou identificar em que momento deverá diversificar a direção de busca, isto pode ser feito através da aplicação de Aprendizagem por Reforço. Neste contexto, este trabalho propõe o uso de uma técnica de Aprendizagem por Reforço - especificamente o Algoritmo Q-learning - como uma estratégia de exploração/explotação para as metaheurísticas GRASP (Greedy Randomized Adaptive Search Procedure) e Algoritmo Genético. Na implementação da metaheurística GRASP proposta, utilizou-se o Q-learning em substituição ao algoritmo guloso-aleatório tradicionalmente usado na fase de construção. Tal substituição teve como objetivo melhorar a qualidade das soluções iniciais que serão utilizadas na fase de busca local do GRASP, e, ao mesmo tempo, suprir esta metaheurísticas de um mecanismo de memória adaptativa que permita a reutilização de boas decisões tomadas em iterações passadas e que evite a repetição de decisões não promissoras. No Algoritmo Genético, o algoritmo Q-learning foi utilizado para gerar uma população inicial de alta aptidão, e após um determinado número de gerações, caso a taxa de diversidade da população seja menor do que um determinado limite L, ele é também utilizado em uma forma alternativa de operador de cruzamento. Outra modificação importante no algoritmo genético híbrido é a proposta de um processo de interação mutuamente cooperativa entre o os operadores genéticos e o Algoritmo Q-learning. Neste processo interativo/cooperativo o algoritmo Q-learning recebe uma atualização adicional na matriz dos Q-valores com base na solução elite da população corrente. Os experimentos computacionais apresentados neste trabalho consistem em comparar os resultados obtidos com a implementação de versões tradicionais das metaheurísticas citadas, com aqueles obtidos utilizando os métodos híbridos propostos. Ambos os algoritmos foram aplicados com sucesso ao problema do caixeiro viajante simétrico, que por sua vez, foi modelado como um processo de decisão de Markov
Abstract: Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/15129
Appears in Collections:PPGEE - Doutorado em Engenharia Elétrica e de Computação

Files in This Item:
File Description SizeFormat 
FranciscoCLJ.pdf1,15 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.