Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/15157
Título: Técnicas de inteligência artificial para a geração dinâmica de set points para uma coluna de destilação
Autor(es): Araújo Júnior, José Medeiros de
Palavras-chave: Gás natural;Sistema Fuzzy;Sistema de inferência;Coluna debutanizadora;Natural gas;Fuzzy system;Inference system;Debutanizer column
Data do documento: 23-Nov-2007
Editor: Universidade Federal do Rio Grande do Norte
Citação: ARAÚJO JÚNIOR, José Medeiros de. Técnicas de inteligência artificial para a geração dinâmica de set points para uma coluna de destilação. 2007. 81 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2007.
Resumo: Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
metadata.dc.description.resumo: No presente trabalho, aplicamos técnicas de inteligência artificial em um sistema simulado de destilação de petróleo, mais especificamente em uma coluna debutanizadora. Nesse processo, o produto que chega à coluna, conhecido como LGN, é fracionado por meio de aquecimento. Os componentes mais leves são transformados em vapor, que vão constituir o GLP (Gás Liquefeito de Petróleo), enquanto as frações mais pesadas continuam líquidas, sendo, comumente, chamadas de C5+. Na composição do GLP, idealmente, temos apenas propanos e butanos, porém, na prática, temos a presença de contaminantes, como, por exemplo, pentanos (ipentanos e n-pentanos). O objetivo do trabalho é regular à quantidade de pentano presente no GLP, por meio da determinação inteligente dos sets points (SP) de controladores presentes na instrumentação original da coluna. Para isso é utilizado um sistema fuzzy, que será responsável por ajustar os valores desses SP s, a partir da comparação entre a fração molar do pentano na saída da planta (GLP) e a quantidade desejada. Optou-se por controlar apenas a fração molar de i-pentano, por esta ser, normalmente, maior que a fração molar do n-pentano, e ainda, devido ao fato de que ambas apresentam dinâmicas extremamente semelhantes em função das condições de operação da coluna. Porém, a fração molar de pentano, seja do i-pentano ou n-pentano, é de difícil medição on-line devido a limitações, como: longos intervalos de medição, pouca confiabilidade e alto custo. Por essa razão, foi utilizado um sistema de inferência, construído a partir de uma rede neural de múltiplas camadas para inferir o percentual de i-pentano a partir de variáveis secundárias da coluna. Os resultados obtidos mostram que o sistema fuzzy conseguiu controlar o valor da fração molar do i-pentano para diversas situações, mostrando ser um sistema de controle avançado viável e com um nível satisfatório de confiabilidade
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/15157
Aparece nas coleções:PPGEE - Mestrado em Engenharia Elétrica e de Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
JoseMAJ.pdf694,39 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.