Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/15235
Título: Seleção de features guiada por atenção visual em imagens com fóvea
Autor(es): Gomes, Rafael Beserra
Palavras-chave: Visão computacional. Atenção visual. Fóvea. Multirresolução;Computer Vision. Visual Attention. Fóvea. Multi-resolution
Data do documento: 2-Ago-2013
Editor: Universidade Federal do Rio Grande do Norte
Citação: GOMES, Rafael Beserra. Seleção de features guiada por atenção visual em imagens com fóvea. 2013. 105 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013.
Resumo: Visual attention is a very important task in autonomous robotics, but, because of its complexity, the processing time required is significant. We propose an architecture for feature selection using foveated images that is guided by visual attention tasks and that reduces the processing time required to perform these tasks. Our system can be applied in bottom-up or top-down visual attention. The foveated model determines which scales are to be used on the feature extraction algorithm. The system is able to discard features that are not extremely necessary for the tasks, thus, reducing the processing time. If the fovea is correctly placed, then it is possible to reduce the processing time without compromising the quality of the tasks outputs. The distance of the fovea from the object is also analyzed. If the visual system loses the tracking in top-down attention, basic strategies of fovea placement can be applied. Experiments have shown that it is possible to reduce up to 60% the processing time with this approach. To validate the method, we tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one of the most efficient approaches for feature extraction. With the proposed architecture, we can accomplish real time requirements of robotics vision, mainly to be applied in autonomous robotics
metadata.dc.description.resumo: A atenção visual é uma importante tarefa em robótica autônoma, mas devido à sua complexidade, o tempo de processamento necessário é significativo. Propõe-se uma arquitetura para seleção de features usando imagens foveadas que é guiada por tarefas envolvendo atenção visual e que reduz o tempo de processamento para realizar tais tarefas. O sistema proposto pode ser aplicado para atenção bottom-up ou top-down. O modelo de foveamento determina quais escalas devem ser utilizadas no algoritmo de extração de features. O sistema é capaz de descartar features que não são essenciais para a realização da tarefa e, dessa forma, reduz o tempo de processamento. Se a fóvea é corretamente posicionada, então é possível reduzir o tempo de processamento sem comprometer o desempenho da tarefa. A distância da fóvea para o objeto também é analisada. Caso o sistema visual perca o tracking na atenção top-down, estratégias básicas de reposicionamento da fóvea podem ser aplicadas. Experimentos demonstram que é possível reduzir em até 60% o tempo de processamento com essa abordagem. Para validar o método proposto, são realizados testes com o algoritmo de extração de features SURF, um dos mais eficientes existentes. Com a arquitetura proposta para seleção de features, é possível cumprir requisitos de um sistema de visão em tempo-real com possíveis aplicações na área de robótica
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/15235
Aparece nas coleções:PPGEE - Doutorado em Engenharia Elétrica e de Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
RafaelBG_TESE.pdf2,47 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.