Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/16536
Título: O Modelo de Ising inomogêneo: uma interrupção contínua entre as redes quadrada e triangular.
Autor(es): Bezerril, Leonardo Mafra
Palavras-chave: Modelo de Ising;Colapso de dados;Escalonamento de tamanhos finitos;Ising model;Data collapse;Finite size scaling
Data do documento: 15-Out-2007
Editor: Universidade Federal do Rio Grande do Norte
Citação: BEZERRIL, Leonardo Mafra. O Modelo de Ising inomogêneo: uma interrupção contínua entre as redes quadrada e triangular.. 2007. 77 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2007.
Resumo: The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.
metadata.dc.description.resumo: Investigamos o diagrama de fases do modelo de Ising, com interações feromagnéticas e antiferromagnéticas, emuma rede bidimensional inomogênea caracterizada por duas constantes de troca (J1 e J2), a qual permite interpolar contínuamente as redes quadrada (J2 = 0) e triangular (J2 = J1) uniformes. Utilizando o método de simulação de Monte Carlo, através da dinâmica deMetropolis aplicada de forma seqüencial, calculamos a magnetização e a susceptibilidade para redes de diversos tamanhos e aplicando técnicas de escalonamento para tamanhos finitos obtemos, através de um colapso de dados, valores para a temperatura crítica e expoentes críticos em função do parâmetro α = J2 J1, contido no intervalo [0, 1]. No caso ferromagnético observamos que a temperatura crítica Tc cresce linearmente com α em todo o intervalo de variação deste parâmetro, enquanto no caso antiferromagnético, o comportamento linear (decrescente) de Tc é observado somente para pequenos valores de α; no intervalo [0.6, 1], onde os efeitos de frustração são mais pronunciados, a temperatura crítica sofre uma redução mais significativa, possivelmente não linear, para seu valor limite Tc = 0, que corresponde à rede triangular homogênea, antiferromagnética, completamente frustrada.
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/16536
Aparece nas coleções:PPGFIS - Mestrado em Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
LeonardoMB.pdf482,67 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.