Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/18587
Título: Teorias f(R) de gravidade na formulação de Palatini
Autor(es): Oliveira, Thiago Bruno Rafael de Freiras
Palavras-chave: Teoria de Einstein;Campo gravitacional;Teorias f(R);formulação de Palatini;Gravity;Gravitational field;Palatini f(R) gravity
Data do documento: 1-Jul-2010
Editor: Universidade Federal do Rio Grande do Norte
Citação: OLIVEIRA, Thiago Bruno Rafael de Freiras. Teorias f(R) de gravidade na formulação de Palatini. 2010. 103 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2010.
Resumo: In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
metadata.dc.description.resumo: Nesta dissertação, após uma breve revisão sobre a Teoria da Relatividade Geral de Einstein e suas aplicações para os modelos cosmológicos de Friedmann-Lemaitre- Robertson-Walker (FLRW), apresentamos e discutimos as teorias alternativas de gravidade denominadas de gravidade f(R). Estas teorias surgem quando substituímos na ação de Einstein-Hilbert o escalar de curvatura de Ricci R por qualquer função f(R) não-linear bem comportada. Elas fornecem uma maneira alternativa para explicar a aceleração cósmica atual sem necessitar envolver qualquer componente de energia escura ou a existência de dimensões espaciais extras. Quando lidamos com gravidade f(R), dois diferentes princípios variacionais podem ser seguidos, a saber, o formalismo métrico e o de Palatini, os quais levam a equações de movimento muito diferentes. Descrevemos brevemente o formalismo métrico e então nos concentramos no princípio variacional de Palatini para a ação da gravidade. Fazemos uma derivação sistemática e detalhada das equações de campo para a gravidade f(R) de Palatini, as quais generalizam as equações de Einstein da Relatividade Geral. Em seguida obtemos as equações de Friedmann generalizadas, que podem ser usadas para testes cosmológicos. Para exemplificar, usamos compilações recentes de observações de supernovas do tipo Ia e mostramos como a classe de teorias de gravidade f(R) = R − /Rn explica a recente aceleração observada do universo quando colocamos vínculos razoáveis sobre os parâmetros livres e n. Examinamos também a questão de como teorias f(R) de gravidade em Palatini permitem espaços-tempos em que a causalidade, um resultado fundamental em qualquer teoria física [22], é violada. Como é bem conhecido, na Relatividade Geral existem soluções para as equações de campo que possuem anomalias causais na forma de curvas tipo-tempo fechadas, sendo o modelo de Gödel o exemplo mais bem conhecido de tais soluções. Aqui mostramos que toda solução do tipo-Gödel de gravidade f(R) em Palatini com fluido perfeito, caracterizado por densidade e pressão p, satisfazendo a condição de energia fraca + p 0, é necessariamente isométrica à geometria de Gödel, demonstrando, portanto, que essas teorias apresentam anomalias causais na forma de curvas tipo-tempo fechadas. Esses resultados ampliam um teorema sobre modelos tipo-Gödel para a estrutura das teorias de gravidade f(R) de Palatini. Derivamos uma expressão para o raio crítico rc (além do qual a causalidade é violada) para uma teoria arbitrária de gravidade f(R) de Palatini. A expressão encontrada tornou claro que a violação da causalidade depende da forma de f(R) e dos componentes do conteúdo de matéria. Examinamos objetivamente as soluções tipo-Gödel de um fluido perfeito na classe f(R) = R − /Rn das teorias de gravidade de Palatini e mostramos que, para uma densidade de matéria positiva e para e n em um intervalo permitido pelas observações, essas teorias não admitem como soluções de suas equações de campo a geometria de Gödel juntamente com um fluido perfeito. Nesse sentido, teorias de gravidade f(R) remediam a patologia causal na forma de curvas tipotempo fechadas que é permitido na Relatividade Geral. Examinamos também essa violação de causalidade ao considerar um campo escalar como conteúdo material. Para essa fonte, mostramos que a gravidade f(R) em Palatini dá origem a uma única solução do tipo-Gödel sem violação de causalidade. Finalmente, mostramos que a combinação de um fluido perfeito mais um campo escalar como fontes de geometrias tipo-Gödel, levam a soluções na forma de curvas tipo-tempo fechadas como a soluções sem violação de causalidade
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/18587
Aparece nas coleções:PPGFIS - Mestrado em Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ThiagoBRFO_DISSERT.pdf758,53 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.