Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/18592
Título: Gravitomagnetismo e o teste da sonda gravidade B
Autor(es): Santos, Noélia Souza dos
Palavras-chave: Relatividade geral;Gravitomagnetismo;Efeito lense-thirring.
Data do documento: 1-Jul-2011
Editor: Universidade Federal do Rio Grande do Norte
Citação: SANTOS, Noélia Souza dos. Gravitomagnetismo e o teste da sonda gravidade B. 2011. 77 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
Resumo: The so-called gravitomagnetic field arised as an old conjecture that currents of matter (no charges) would produce gravitational effects similar to those produced by electric currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation to the Einsteins field equations, deduced that a slowly rotating massive shell drags the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to astronomy the calculations of Thirring. Later, that effect came to be known as the Lense- Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With that finality, we develop the weak field approximation to General Relativity and obtain the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect (geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of 6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively (1 mas = 4:84810��9 radian). These results are in a good agreement with the General Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year for the de Sitter effect.
metadata.dc.description.resumo: O denominado campo gravitomagnético surgiu como uma antiga conjectura de que correntes de matéria (sem cargas) produziriam efeitos gravitacionais análogos aos produzidos pelas correntes elétricas no Eletromagnetismo. Hans Thirring em 1918, usando a aproximação de campo fraco para as equações de campo de Einstein, deduziu que uma casca massiva girando lentamente arrasta os referenciais inerciais no sentido de sua rotação. No mesmo ano Joseph Lense aplicou na Astronomia os cálculos de Thirring. Posteriormente, este efeito ficou conhecido como efeito Lense-Thirring. Juntamente com o efeito de Sitter, esses fenômenos foram recentemente testados através de giroscópios em órbita em torno da Terra, uma antiga proposta feita por George E. Pugh em 1959 e por Leonard I. Schiff em 1960. Nesta dissertação, estudamos os efeitos gravitacionais associados à rotação de corpos massivos à luz da teoria da Relatividade Geral de Einstein. Com essa finalidade, desenvolvemos a aproximação de campo fraco para a Relatividade Geral e obtemos os vários efeitos gravitacionais associados: atraso gravitomagnético dos relógios (gravitomagnetic time-delay), efeito de Sitter (precessão das geodésicas) e o efeito Lense-Thirring (arraste dos referenciais inerciais). Discutimos as medidas do efeito Lense- Thirring do satélite LAGEOS (LAser GEOdynamics Satellite) e da missão "Sonda Gravidade B"(Gravity Probe B - GPB). O satélite da GPB foi lançado em órbita em torno da Terra a uma altitude de 642 km pela NASA em 2004. Resultados apresentados em maio de 2011 mostram claramente a existência do efeito Lense-Thirring - um arraste dos referenciais inerciais de 37; 2 7; 2 msa/ano (msa = milisegundo de arco)- e do efeito de Sitter - uma deriva geodética de 6:601; 8 18; 3 msa/ano - com precisão de 19% e de 0,28% respectivamente (1 msa = 4; 848 10􀀀9 radiano). Esses resultados estão em bom acordo com os valores previstos pela teoria da Relatividade Geral que são de 41 msa/ano para o efeito Lense-Thirring e 6.606,1 msa/ano para o efeito de Sitter
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/18592
Aparece nas coleções:PPGFIS - Mestrado em Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
NoeliaSS_DISSERT.pdf589,44 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.