Use este identificador para citar ou linkar para este item:
Título: Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves
Autor(es): Peres, André Salles Cunha
Lemos, Tenysson Will de
Barros, Allan Kardec Duailibe
Baffa Filho, Oswaldo
Araújo, Dráulio Barros de
Palavras-chave: Cluster algorithm;Hierarchical;k-means;Self-organizing maps;False-positives;fMRI
Data do documento: Mar-2017
metadata.dc.description.resumo: Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.
Aparece nas coleções:ICe - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Performance quantification of clustering.pdfDraulioAraujo_ICe_Performance quantification_20172,28 MBAdobe PDFThumbnail

Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.