Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/25099
Título: Detecção e tipagem de arbovírus (dengue, zika e chikungunya) por infravermelho em conjunto com técnicas de análise multivariada
Autor(es): Santos, Marfran Claudino Domingos dos
Palavras-chave: Dengue;Zika;Chikungunya;Infravermelho;Análise multivariada
Data do documento: 30-Jan-2018
Citação: SANTOS, Marfran Claudino Domingos dos. Detecção e tipagem de arbovírus (dengue, zika e chikungunya) por infravermelho em conjunto com técnicas de análise multivariada. 2018. 89f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.
Resumo: The objective of the studies reported in this dissertation is to evaluate the use of infrared spectroscopy in conjunction with chemometric techniques of multivariate analysis, as a new tool for detection and typing of arboviruses present in clinical samples. In this dissertation there are 4 articles: 1 review article and 3 research articles. The review article is a survey of the main techniques spectroscopic and multivariate analysis techniques used in studies in the field of virology in the last 10 years, as well as the advantages of these techniques against standard techniques. In the first research article, multivariate models based on discriminant analysis were constructed with the objective of quantitatively discriminating the DENV-3 serotype present in four different concentrations in serum and blood samples. In the second study, variable selection techniques were applied with the objective of discriminating infected serum and blood samples in the laboratory, and also to predict which serotype is responsible for the infection. In the third study, the ability of the technique to discriminate between 4 groups of samples: dengue (blood samples from patients diagnosed with dengue), Chikungunya (blood samples from patients diagnosed with Chikungunya), Zika (blood samples from patients diagnosed with Zika) and healthy (blood samples from healthy volunteers). The multivariate analysis algorithms used were Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA) and Genetic Algorithm-Linear Discriminant Analysis (GA-LDA). The performance of the technique was evaluated through calculations of sensitivity, specificity, positive and negative predictive values, Youden index and positive and negative likelihood ratio. The results were encouraging, and showed that the spectroscopy used in conjunction with multivariate analysis techniques has the potential to detect and identify the variations caused by the presence of dengue virus in biological samples, and to provide a fast result in comparison to the diagnostic techniques used in clinical routines.
metadata.dc.description.resumo: O objetivo dos estudos reportados nesta dissertação é avaliar o uso da Espectroscopia de infravermelho em conjunto com técnicas quimiométricas de análise multivariada, como uma nova ferramenta para detecção e tipagem de arbovírus presentes em amostras clínicas. Nesta dissertação constam 4 artigos: 1 artigo de revisão e 3 artigos de pesquisa. O artigo de revisão faz um levantamento das principais técnicas espectroscópicas e técnicas de análise multivariada utilizadas em estudos no campo da virologia nos últimos 10 anos, bem como as vantagens destas, frente às técnicas padrão. No primeiro artigo de pesquisa, modelos multivariados baseados em análise discriminante foram construídos com o objetivo de discriminar quantitativamente o sorotipo DENV-3 presente em quatro diferentes concentrações em amostras de soro e sangue. No segundo estudo, técnicas de seleção de variáveis foram aplicadas com o objetivo de discriminar amostras de soro e sangue infectadas em laboratório, e ainda, predizer qual o sorotipo é responsável pela infecção. No terceiro estudo, foi avaliada a capacidade da técnica em discriminar entre 4 grupos de amostras: dengue (amostras de sangue de pacientes diagnosticados com dengue), Chikungunya (amostras de sangue de pacientes diagnosticados com Chikungunya), Zika (amostras de sangue de pacientes diagnosticados com Zika) e saudáveis (amostras de sangue de voluntários saudáveis). Os algoritmos de análise multivariada utilizados foram Análise de Componentes Principais-Análise Discriminante Linear (PCA-LDA), Algoritmo de Projeções Sucessivas-Análise Discriminante Linear (SPA-LDA) e Algoritmo Genético-Análise Discriminante Linear (GA-LDA). O desempenho da técnica foi avaliado através de cálculos de sensibilidade, especificidade, valores preditivos positivos e negativos, índice de Youden e razão de verossimilhança positiva e negativa. Os resultados foram animadores, e mostraram que a espectroscopia utilizada em conjunto com técnicas de análise multivariada tem o potencial de detectar e identificar as variações provocadas pela presença do vírus da dengue em amostras biológicas, e fornecer resultados rápidos em comparação às técnicas de diagnóstico utilizadas em rotinas clínicas.
URI: https://repositorio.ufrn.br/jspui/handle/123456789/25099
Aparece nas coleções:PPGQ - Mestrado em Química

Arquivos associados a este item:
Arquivo TamanhoFormato 
MarfranClaudinoDomingosDosSantos_DISSERT.pdf6,84 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.