Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/jspui/handle/123456789/26933
Title: Diversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica
Other Titles: Diversity and similarity as criteria for selection of classifiers in dynamic selection committees
Authors: Lustosa Filho, José Augusto Saraiva
Keywords: Comitês de classificadores;Seleção dinâmica;Diversidade;Similaridade
Issue Date: 24-Aug-2018
Citation: LUSTOSA FILHO, José Augusto Saraiva. Diversidade e similaridade como critério de seleção de classificadores em comitês de seleção dinâmica. 2018. 166f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.
Portuguese Abstract: As técnicas de classificadores de padrões são consideradas atividades chave na área de reconhecimento de padrões, onde busca-se atribuir um rótulo à uma amostra de teste. A utilização de classificadores individuais geralmente apresentam deficiências nas taxas de reconhecimento quando comparado à utilização de múltiplos classificadores para executar a mesma tarefa de classificação. Conforme a literatura, comitês de classificadores proveem melhores taxas de reconhecimento quando os classificadores candidatos apresentam erros não correlacionados em diferentes sub-espaços do problema. Nesse contexto, essa tese de doutorado explora diversos métodos de seleção de classificadores, baseados em seleção dinâmica, adicionando um critério de seleção que prioriza diversidade e/ou similaridade entre os classificadores base. Dessa forma os experimentos avaliados visam elucidar empiricamente a relevância da diversidade e/ou similaridade entre os classificadores base de comitês baseados em seleção dinâmica. Diversos trabalhos exploram diversidade em comitês de classificadores baseados em seleção estática e apontam que a diversidade entre os classificadores base é um fator que influência positivamente nas taxas de acurácias dos comitês, no entanto no contexto de comitês baseados em seleção dinâmica há pouca literatura relacionada e carência de pesquisas que exploram a influência da diversidade e similaridade entre os classificadores base.
Abstract: Pattern classification techniques are considered to be key activities in the area of pattern recognition, where seeks to assign a test sample to a class. The use of individual classifiers usually exhibits deficiencies in recognition rates when compared to the use of multiple classifiers to perform the same classification task. According to the literature, ensemble of classifiers provide better recognition rates when candidate classifiers present uncorrelated errors in different sub-spaces of the problem. In this context, this doctoral thesis explores several methods of selection of classifiers, based on dynamic selection, adding a selection criterion that prioritizes diversity and/or similarity between the base classifiers. In this way the experiments evaluated aim to empirically elucidate the relevance of diversity and/or similarity among the base classifiers of ensembles based on dynamic selection. Many papers explore diversity in ensemble systems based on static selection and indicate that diversity among the base classifiers is a factor that positively influences accuracy rates, however in the context of ensemble based on dynamic selection there is no enough related literature and few research that explore the influence of diversity and similarity among the base classifiers.
URI: https://repositorio.ufrn.br/jspui/handle/123456789/26933
Appears in Collections:PPGSC - Doutorado em Sistemas e Computação

Files in This Item:
File Description SizeFormat 
Diversidadesimilaridadecritério_LustosaFilho_2018.pdf8.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.