Modelos híbridos estocástico - matemático para previsão de velocidade do vento

dc.contributor.advisorLucio, Paulo Sérgio
dc.contributor.advisorIDpt_BR
dc.contributor.authorCamelo, Henrique do Nascimento
dc.contributor.authorIDpt_BR
dc.contributor.referees1Alves, José Maria Brabo
dc.contributor.referees1IDpt_BR
dc.contributor.referees2Leal Júnior, João Bosco Verçosa
dc.contributor.referees2IDpt_BR
dc.contributor.referees3Sakamoto, Meiry Sayuri
dc.contributor.referees3IDpt_BR
dc.contributor.referees4Carvalho, Paulo César Marques de
dc.contributor.referees4IDpt_BR
dc.date.accessioned2019-02-14T22:20:55Z
dc.date.available2019-02-14T22:20:55Z
dc.date.issued2018-11-23
dc.description.abstractIn the last 10 years, it is possible to identify greater insertions of renewable energy resources for electricity generation in the national energy matrix, such as wind generation. This can be justified in several aspects, for example, in relation to the wind power source; it has played an important role in the Brazilian matrix by providing a financially viable alternative to the main electricity generator in the country that is the hydraulic source. Another point in favor of the wind generation is the environmental issue, the use of this resource must be considered in this aspect, in addition in the Northeast of Brazil there is the so-called complementarity, this when the river flows to generate energy are low, second half of the year, in much of it according to climatology the winds are more intense. The amount of work on wind generation in the country grows each day bringing benefits to the particular sector providing guarantees of exploitation of the local winds. In this sense, the objective of this work is to present two innovative hybrid models, which can help in the wind sector, by being able to predict wind velocities with good accuracy based on validation measures of the models. The models were elaborated from the mathematical combinations of two classic time-series models (Integrated Automatic Regressive of Moving Averages and Exogenous inputs (ARIMAX) and Exponen Tial Exponential Smoothing with Holt-Winters - HW) with an artificial intelligence model (Artificial Neural Network (RNA)). In the comparisons between the time series (observed and adjusted in terms of monthly and hourly averages) it is possible to identify, for example, Nash-Sutcliffe (NS) efficiency value of approximately 98%, and also percentage error value around 4.5%, which according to the literature (as will be shown) confirm the good accuracy of the models. A large differential of the proposed hybrid models, when compared to other traditional ones is that they can incorporate both linear and nonlinear characteristics, which are often found in time series, being this important condition to provide greater precision of the velocities of the predicted wind, thus providing greater reductions in statistical error measures (for example, in some cases of the order of 50%) when compared with the classical models that compose them. The proposed hybrid models may represent important tools for decision-makers in the wind generation sector in terms of wind exploitation; however, other areas of interest can be analyzed for their feasibility.pt_BR
dc.description.resumoNos últimos dez anos, é possível identificar maiores inserções de recursos renováveis de energias para geração de eletricidade na matriz energética nacional, como é o caso da geração eólica. Isto pode ser justificado em diversos aspectos, por exemplo, em relação à fonte eólica que tem exercido importante função na matriz brasileira ao fornecer uma alternativa financeiramente viável à principal geradora de eletricidade do país, como a fonte hidráulica. Outro ponto a favor da geração eólica trata-se da questão ambiental, a utilização deste recurso deve ser encarada sobretudo neste aspecto. Além disso, no Nordeste do Brasil, há a chamada complementariedade, isto quando as vazões dos rios para gerarem energia são baixas, principalmente, segundo semestre do ano, em grande parte da mesma os ventos são, climatologicamente, mais intensos. A quantidade de trabalhos sobre geração eólica no Brasil cresce a cada dia, trazendo benefícios ao setor em particular e fornecendo garantias de exploração dos ventos locais. Nesse sentido este trabalho tem como objetivo apresentar dois modelos híbridos inovadores os quais poderão auxiliar no setor eólico por serem capazes de realizar previsões das velocidades dos ventos com boa acurácia afirmação baseada em medidas de validações dos modelos. Os modelos foram elaborados a partir das combinações matemáticas de dois modelos clássicos de séries temporais (Auto-Regressivo Integrado de Médias Móveis e Entradas Exógenas (ARIMAX) e suavização exponencial com o HoltWinters (HW)) com um modelo de inteligência artificial (Rede Neural Artificial (RNA)). Nas comparações entre as séries temporais (observada e ajustada em termos de médias mensais e horárias) é possível identificar, por exemplo, valor do coeficiente de eficiência Nash-Sutcliffe (NS) de aproximadamente 98%, e também valor de erro percentual em torno de 4,5%, os quais de acordo com a literatura confirmam a boa acurácia dos modelos. Um grande diferencial dos modelos híbridos propostos quando comparado com outros tradicionais da literatura está no fato de que conseguem incorporar as características (linear e não-linear), as quais são frequentemente encontradas em séries temporais, uma condição importante para proporcionar maiores precisões das velocidades do vento previstas fornecendo, desta maneira, maiores reduções de medidas estatísticas de erros, por exemplo, em alguns casos da ordem de 50%,quando comparado com os modelos clássicos que os compõem. Os modelos híbridos propostos podem representar importantes ferramentas norteadoras aos tomadores de decisão do setor de geração eólica no tocante a exploração dos ventos, entretanto, outras áreas de interesse podem ser analisadas quanto à viabilidade dos mesmos.pt_BR
dc.description.sponsorshipAgência Nacional do Petróleo (ANP)pt_BR
dc.identifier.citationCAMELO, Henrique do Nascimento. Modelos híbridos estocástico - matemático para previsão de velocidade do vento. 2018. 138f. Tese (Doutorado em Ciências Climáticas) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.pt_BR
dc.identifier.urihttps://repositorio.ufrn.br/jspui/handle/123456789/26651
dc.languageporpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.initialsUFRNpt_BR
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS CLIMÁTICASpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSéries temporaispt_BR
dc.subjectBox-Jenkinspt_BR
dc.subjectHolt-Winterspt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectNordeste brasileiropt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA: CIÊNCIAS CLIMÁTICASpt_BR
dc.titleModelos híbridos estocástico - matemático para previsão de velocidade do ventopt_BR
dc.typedoctoralThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Modeloshíbridosestocástico_Camelo_2018.pdf
Tamanho:
10.05 MB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Baixar