Analysis of feature selection on the performance of multimodal keystroke dynamics biometric systems

dc.contributor.advisorAbreu, Márjory da Costa
dc.contributor.authorMendes, Brenda Vasiljevic Souza
dc.date.accessioned2017-09-06T13:13:01Z
dc.date.accessioned2021-09-20T12:02:08Z
dc.date.available2017-09-06T13:13:01Z
dc.date.available2021-09-20T12:02:08Z
dc.date.issued2017
dc.description.resumoNew security systems, methods or techniques need to have their performance evaluated in conditions that closely resemble a real-life situation. Moreover, biometric systems need a realistic set of biometrics data to test their accuracy when classifying individuals between legitimate users or impostors. The use of similar modalities may influence the use of the same features, however, there is no indication that basic biometrics will perform well using the same set of features. This report aims to be the first to investigate the impact of feature selection in two similar yet different biometric modalities: keyboard keystroke dynamics and touchscreen keystroke dynamics. We have found that an efficient feature selection method, chosen to suit the needs of the classification algorithm employed by the system, can multiply accuracy rates while diminishing the number of features to be processed to a small subset - which also improves the system’s processing time and overall usability.pr_BR
dc.identifier2012939440pr_BR
dc.identifier.citationMENDES, Brenda Vasiljevic Souza. Analysis of feature selection on the performance of multimodal keystroke dynamics biometric systems. 2017. 54 f. TCC (Graduação) - Curso de Engenharia de Software, Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2017.pr_BR
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/34253
dc.languageen_USpr_BR
dc.publisherUniversidade Federal do Rio Grande do Nortepr_BR
dc.publisher.countryBrasilpr_BR
dc.publisher.departmentEngenharia de Softwarepr_BR
dc.publisher.initialsUFRNpr_BR
dc.rightsopenAccesspr_BR
dc.subjectkeyboard keystroke dynamicspr_BR
dc.subjecttouch keystroke dynamicspr_BR
dc.subjectbiometricspr_BR
dc.subjectfeature selectionpr_BR
dc.subjectclassification accuracypr_BR
dc.titleAnalysis of feature selection on the performance of multimodal keystroke dynamics biometric systemspr_BR
dc.typebachelorThesispr_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
FeatureSelection_Mendes_2017.pdf
Tamanho:
538.27 KB
Formato:
Adobe Portable Document Format
Descrição:
Monografia
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
756 B
Formato:
Plain Text
Nenhuma Miniatura disponível
Baixar