Identification of Promiscuous T cell Epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches

dc.contributor.advisorOliveira, Jonas Ivan Nobre
dc.contributor.authorSilva, Maria Karolaynne
dc.contributor.referees1Oliveira, Jonas Ivan Nobre
dc.contributor.referees2Oliveira, Claudio Bruno Silva de
dc.contributor.referees3Bezerra, Katyanna Sales
dc.date.accessioned2021-03-20T00:51:43Z
dc.date.accessioned2021-09-20T17:49:24Z
dc.date.available2021-03-20T00:51:43Z
dc.date.issued2021-03-10
dc.description.embargo2022-03-10
dc.description.resumoThe Mayaro virus (MAYV) belongs to genus Alphavirus (family Togaviridae) and has been reported in several countries, especially in tropical regions of America. Due to its outbreaks and potential lack of medication, an effective vaccine formulation is strongly required. This study aimed to predict promiscuous T cell epitopes from structural polyproteins of MAYV using an immunoinformatics approach. For this purpose, consensus sequences were used to identify short protein sequences capable of binding to MHC class I and class II alleles. Our analysis pointed out 4 MHC-I/TCD8+ and 21 MHC-II/TCD4+ epitopes on capside (1;3), E1 (2;5), E2 (1;10), E3 (0;2), and 6K (0;1) proteins. These predicted epitopes were characterized by high antigenicity, immunogenicity, conservancy, non-allergenic, non-toxic, and good population coverage rate values for North and South American geographical areas. Afterwards, we used the crystal structure of human toll-like receptor 3 (TLR3) ectodomain as a template to predict, through docking essays, the placement of a vaccine prototype at the TLR3 receptor binding site. Finally, classical and quantum mechanics/molecular mechanics (QM:MM) computations were employed to improve the quality of docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. These results provide important insights into the advancement of diagnostic platforms, the development of vaccines, and immunotherapeutic interventions.pt_BR
dc.description.sponsorshipCapes, CNPqpt_BR
dc.identifier2016080660pt_BR
dc.identifier.citationSILVA, Maria Karolaynne da. Identification of Promiscuous T cell Epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches. 2021. 30 f. Trabalho de Conclusão de Curso (Graduação em Farmácia) - Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 2021.pt_BR
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/35703
dc.languagept_BRpt_BR
dc.publisherUniversidade Federal do Rio Grande do Nortept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentFarmáciapt_BR
dc.publisher.initialsUFRNpt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMayaro viruspt_BR
dc.subjectImmunoinformaticspt_BR
dc.subjectEpitope predictionpt_BR
dc.subjectMHC Class I and IIpt_BR
dc.subjectTCD8+pt_BR
dc.subjectTCD4+pt_BR
dc.titleIdentification of Promiscuous T cell Epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approachespt_BR
dc.typebachelorThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
IdentificationofPromiscuousTcellEpitopes_Silva_2021
Tamanho:
8.89 MB
Formato:
Unknown data format
Descrição:
Texto Completo
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
714 B
Formato:
Plain Text
Nenhuma Miniatura disponível
Baixar