Optimizing the detection of nonstationary signals by using recurrence analysis
dc.contributor.author | Prado, Thiago de Lima | |
dc.contributor.author | Lima, Gustavo Zampier dos Santos | |
dc.contributor.author | Lobão-Soares, Bruno | |
dc.contributor.author | Nascimento, George Carlos do | |
dc.contributor.author | Corso, Gilberto | |
dc.contributor.author | Araújo, John Fontenele | |
dc.contributor.author | Kurths, Jürgen | |
dc.contributor.author | Lopes, Sérgio Roberto | |
dc.date.accessioned | 2020-12-04T19:42:22Z | |
dc.date.available | 2020-12-04T19:42:22Z | |
dc.date.issued | 2018-08-24 | |
dc.description.resumo | Recurrence analysis and its quantifiers are strongly dependent on the evaluation of the vicinity threshold parameter, i.e., the threshold to regard two points close enough in phase space to be considered as just one. We develop a new way to optimize the evaluation of the vicinity threshold in order to assure a higher level of sensitivity to recurrence quantifiers to allow the detection of even small changes in the dynamics. It is used to promote recurrence analysis as a tool to detect nonstationary behavior of time signals or space profiles. We show that the ability to detect small changes provides information about the present status of the physical process responsible to generate the signal and offers mechanisms to predict future states. Here, a higher sensitive recurrence analysis is proposed as a precursor, a tool to predict near future states of a particular system, based on just (experimentally) obtained signals of some available variables of the system. Comparisons with traditional methods of recurrence analysis show that the optimization method developed here is more sensitive to small variations occurring in a signal. The method is applied to numerically generated time series as well as experimental data from physiology | pt_BR |
dc.identifier.citation | PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; LOBÃO-SOARES, Bruno; NASCIMENTO, George C. do; CORSO, Gilberto; FONTENELE-ARAUJO, John; KURTHS, Jürgen; LOPES, Sergio Roberto. Optimizing the detection of nonstationary signals by using recurrence analysis. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 085703-085703, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5022154. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5022154. | pt_BR |
dc.identifier.doi | 10.1063/1.5022154 | |
dc.identifier.issn | 1054-1500 | |
dc.identifier.issn | 1089-7682 | |
dc.identifier.uri | https://repositorio.ufrn.br/handle/123456789/30824 | |
dc.language | en | pt_BR |
dc.publisher | American Institute of Physics | pt_BR |
dc.subject | Coupled oscillators | pt_BR |
dc.subject | Measuring instruments | pt_BR |
dc.subject | Musculoskeletal system | pt_BR |
dc.subject | Data visualization | pt_BR |
dc.subject | Lorenz system | pt_BR |
dc.subject | Fourier analysis | pt_BR |
dc.subject | Data acquisition | pt_BR |
dc.subject | Mammals | pt_BR |
dc.subject | Dynamical systems | pt_BR |
dc.subject | Neuroanatomy | pt_BR |
dc.title | Optimizing the detection of nonstationary signals by using recurrence analysis | pt_BR |
dc.type | article | pt_BR |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- OptimizingTheDetection_Lima_2018.pdf
- Tamanho:
- 3.81 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Artigo
Nenhuma Miniatura disponível
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.45 KB
- Formato:
- Item-specific license agreed upon to submission
Nenhuma Miniatura disponível