First Break Detection: A Self-Improving Deep Learning Framework

dc.contributor.advisorBarros, Tiago Tavares Leite
dc.contributor.advisor-co1Araújo, Ramon Cristian Fernandes
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9195180675075302pt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/1321568048490353pt_BR
dc.contributor.authorNascimento, André Eduardo Meneses do
dc.contributor.authorLatteshttp://lattes.cnpq.br/1053402066195154pt_BR
dc.contributor.referees1Corso, Gilberto
dc.contributor.referees1Latteshttp://lattes.cnpq.br/0274040885278760pt_BR
dc.contributor.referees2Oliveira, Luiz Affonso Henderson Guedes de
dc.contributor.referees2Latteshttp://lattes.cnpq.br/7987212907837941pt_BR
dc.date.accessioned2025-01-21T15:42:22Z
dc.date.available2025-01-21T15:42:22Z
dc.date.issued2025-01-20
dc.description.abstractThis work presents an iterative deep learning framework for first-break detection in seismic data processing that prioritizes dataset-specific adaptability over universal generalization. The methodology combines a U-Net architecture with domain-specific quality control mechanisms to expand the training dataset from limited initial annotations. Experiments conducted on two Canadian mining seismic datasets demonstrate the framework’s effec- tiveness, with the Halfmile dataset showing improvements through iterative training - reducing mean absolute error from 16.16 to 9.16 samples while maintaining high window accuracy (0.9677). Results from the Sudbury dataset reveal the framework’s sensibility to data quality and underlying annotation consistency. These findings suggest potential benefits in developing workflows that adapt to specific survey characteristics.pt_BR
dc.description.resumoThis work presents an iterative deep learning framework for first-break detection in seismic data processing that prioritizes dataset-specific adaptability over universal generalization. The methodology combines a U-Net architecture with domain-specific quality control mechanisms to expand the training dataset from limited initial annotations. Experiments conducted on two Canadian mining seismic datasets demonstrate the framework’s effec- tiveness, with the Halfmile dataset showing improvements through iterative training - reducing mean absolute error from 16.16 to 9.16 samples while maintaining high window accuracy (0.9677). Results from the Sudbury dataset reveal the framework’s sensibility to data quality and underlying annotation consistency. These findings suggest potential benefits in developing workflows that adapt to specific survey characteristics.pt_BR
dc.identifier.citationNASCIMENTO, André Eduardo Meneses do. First Break Detection: a Self-Improving Deep Learning Framework - 2025. 47 f . Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) - Departamento de Engenharia da Computação, Universidade Federal do Rio Grande do Norte, Natal, 2022pt_BR
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/61498
dc.languageenpt_BR
dc.publisherUniversidade Federal do Rio Grande do Nortept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentDepartamento de Engenharia de Computação e Automaçãopt_BR
dc.publisher.initialsUFRNpt_BR
dc.publisher.programEngenharia de Computaçãopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectFirst breakspt_BR
dc.subjectSeismic processingpt_BR
dc.subjectIterative trainingpt_BR
dc.subjectQuality controlpt_BR
dc.subjectDeep learningpt_BR
dc.titleFirst Break Detection: A Self-Improving Deep Learning Frameworkpt_BR
dc.typebachelorThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
tcc_ficha.pdf
Tamanho:
2.42 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.45 KB
Formato:
Item-specific license agreed upon to submission
Nenhuma Miniatura disponível
Baixar