Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/15517
Título: Modelagem de Superfícies Seletivas de Freqüência e Antenas de Microfita utilizando Redes Neurais Artificiais
Autor(es): Silva, Patric Lacouth da
Palavras-chave: Dispositivos de Microondas;Redes Neurais Artificiais;Antenas de microfita;Microwave devices;Artificial neural networks;Microstrip antennas
Data do documento: 9-Jun-2006
Editor: Universidade Federal do Rio Grande do Norte
Citação: SILVA, Patric Lacouth da. Modelagem de Superfícies Seletivas de Freqüência e Antenas de Microfita utilizando Redes Neurais Artificiais. 2006. 79 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2006.
Resumo: This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas
metadata.dc.description.resumo: Este trabalho tem como principal objetivo a aplicação de Redes Neurais Artificiais, RNA, na resolução de problemas de dispositivos de RF /microondas, como por exemplo a predição da resposta em freqüência de algumas estruturas em uma região de interesse. As Redes Neurais Artificiais se apresentam como uma alternativa aos métodos atuais de análise de estrutura de microondas, pois são capazes de aprender, e o mais importante generalizar o conhecimento adquirido, a partir de qualquer tipo de dado disponível, mantendo a precisão da técnica original utilizada e aliando o baixo custo computacional dos modelos neurais. Por esse motivo, as redes neurais artificiais são cada vez mais utilizadas para a modelagem de dispositivos de microondas. São utilizados neste trabalho os modelos Perceptron de Múltiplas Camadas e de Funções de Base Radiais. São descritas as vantagens/desvantagens de cada um desses modelos, assim como os algoritmos de treinamento referentes a cada um deles. Dispositivos planares de microondas, como Superfícies Seletivas de Freqüências e as antenas de microfita, ganham cada vez mais destaque devido às necessidades crescentes de filtragem e separação de ondas eletromagéticas e à miniaturização de dispositivos de Rádio-Freqüência. Por isso é de importância fundamental o estudo dos parâmetros estruturais desses dispositivos de forma rápida e precisa. Os resultados apresentados, demonstram as capacidades das técnicas neurais para modelagem de Superfícies Seletivas de Freqüência e antenas
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/15517
Aparece nas coleções:PPGEE - Mestrado em Engenharia Elétrica e de Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
PatricLS.pdf740,48 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.