Please use this identifier to cite or link to this item: https://repositorio.ufrn.br/handle/123456789/17949
Title: Uma nova forma de calcular os centros dos Clusters em algoritmos de agrupamento tipo fuzzy c-means
Authors: Vargas, Rogerio Rodrigues de
Keywords: agrupamentos;centros dos clusters;ckMeans;fuzzy C-Means;dados intervalares;lógica fuzzy;ckMeans;cluster center;clustering;fuzzy C-Means;fuzzy logic
Issue Date: 30-Mar-2012
Publisher: Universidade Federal do Rio Grande do Norte
Citation: VARGAS, Rogerio Rodrigues de. Uma nova forma de calcular os centros dos Clusters em algoritmos de agrupamento tipo fuzzy c-means. 2012. 98 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
Portuguese Abstract: Agrupar dados é uma tarefa muito importante em mineração de dados, processamento de imagens e em problemas de reconhecimento de padrões. Um dos algoritmos de agrupamentos mais popular é o Fuzzy C-Means (FCM). Esta tese propõe aplicar uma nova forma de calcular os centros dos clusters no algoritmo FCM, que denominamos de ckMeans, e que pode ser também aplicada em algumas variantes do FCM, em particular aqui aplicamos naquelas variantes que usam outras distâncias. Com essa modificação, pretende-se reduzir o número de iterações e o tempo de processamento desses algoritmos sem afetar a qualidade da partição ou até melhorar o número de classificações corretas em alguns casos. Também, desenvolveu-se um algoritmo baseado no ckMeans para manipular dados intervalares considerando graus de pertinência intervalares. Este algoritmo possibilita a representação dos dados sem conversão dos dados intervalares para pontuais, como ocorre com outras extensões do FCM que lidam com dados intervalares. Para validar com as metodologias propostas, comparou-se o agrupamento ckMeans com os algoritmos K-Means (pois o algoritmo proposto neste trabalho para cálculo dos centros se assemelha à do K-Means) e FCM, considerando três distâncias diferentes. Foram utilizadas várias bases de dados conhecidas. No caso, os resultados do ckMeans intervalar, foram comparadas com outros algoritmos de agrupamento intervalar quando aplicadas a uma base de dados intervalar com a temperatura mínima e máxima do mês de um determinado ano, referente a 37 cidades distribuídas entre os continentes
Abstract: Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents
URI: http://repositorio.ufrn.br:8080/jspui/handle/123456789/17949
Appears in Collections:PPGSC - Doutorado em Sistemas e Computação

Files in This Item:
File Description SizeFormat 
RogerioRV_TESE.pdf751,29 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.