Please use this identifier to cite or link to this item:
Title: Confinement of magnetic vortex and domain walls in dipolar coupled concentric nanocylinders
Authors: Carriço, Artur da Silva
Dantas, Ana L.
Rebouças, G. O. G.
Souza Júnior, I. D. Q.
Souza, C. M.
Oliveira, Leonardo L.
Nunes, Marcos S.
Keywords: Bimagnetic core–shel;Dipolar interaction;Domain walls,;Magnetic vortex
Issue Date: May-2015
Publisher: IEEE
Citation: CARRIÇO, Artur da Silva. Confinement of magnetic vortex and domain walls in dipolar coupled concentric nanocylinders,. IEEE Transactions on Magnetics, v. 51, p. 2301804, 2015. ISSN 0018-9464. DOI 10.1109/TMAG.2015.2459033. Disponível em: Acesso em: 8 abr. 2020.
Portuguese Abstract: We report a theoretical study of the magnetic phases of core–shell nanocylinders, consisting of a Py cylindrical core, dipolar coupled to a coaxial Fe cylindrical shell. A few nanometers thick nonmagnetic cylindrical layer separates the core from the shell, and controls the magnitude of the core–shell dipolar interaction. New magnetic phases emerge from the dipolar interaction, and may consist of either the combination of the intrinsic magnetic phases or new phases that are not seen in isolated cylinders and shells. We discuss typical examples. The magnetic phases of a 21 nm-height nanocylinder composed of a 57 nm-diameter Py core coupled to a 12 nm-thick Fe shell may be set to be a Py vortex with the same chirality of the Fe shell circular state, or a Py uniform domain coupled to a pair of domain walls of the Fe shell onion state. A magnetic vortex may be stabilized in a 6 nm-height, 42 nm-diameter Py cylinder coupled to a 6 nm-thick Fe shell.
ISSN: 0018-9464
Appears in Collections:CCET - DFTE - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ConfinementOfMagneticVortexAndDomain_carrico_2015.pdf2,6 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.