Please use this identifier to cite or link to this item:
Title: Zebrafish automatic monitoring system for conditioning and behavioral analysis
Authors: Barreiros, Marta de Oliveira
Barbosa, Felipe Gomes
Dantas, Diego de Oliveira
Santos, Daniel de Matos Luna dos
Ribeiro, Sidarta Tollendal Gomes
Santos, Giselle Cutrim de Oliveira
Barros, Allan Kardec
Keywords: Zebrafish - Automatic monitoring system;YOLOv2 network;Behavior, animal
Issue Date: 29-Apr-2021
Publisher: Springer Science and Business Media LLC
Citation: BARREIROS, Marta de Oliveira; BARBOSA, Felipe Gomes; DANTAS, Diego de Oliveira; SANTOS, Daniel de Matos Luna dos; RIBEIRO, Sidarta; SANTOS, Giselle Cutrim de Oliveira; BARROS, Allan Kardec. Zebrafish automatic monitoring system for conditioning and behavioral analysis. Scientific Reports, [S.L.], v. 11, p. 9330, abr. 2021. Doi: Disponível em: Acesso em: 30 abr. 2021.
Portuguese Abstract: Studies using zebrafish (Danio rerio) in neuro-behavioural research are growing. Measuring fish behavior by computational methods is one of the most efficient ways to avoid human bias in experimental analyses, extending them to various approaches. Sometimes, thorough analyses are difficult to do, as fish can behave unpredictably during an experimental strategy. However, the analyses can be implemented in an automated way, using an online strategy and video processing for a complete assessment of the zebrafish behavior, based on the detection and tracking of fish during an activity. Here, a fully automatic conditioning and detailed analysis of zebrafish behavior is presented. Microcontrolled components were used to control the delivery of visual and sound stimuli, in addition to the concise amounts of food after conditioned stimuli for adult zebrafish groups in a conventional tank. The images were captured and processed for automatic detection of the fish, and the training of the fish was done in two evaluation strategies: simple and complex. In simple conditioning, the zebrafish showed significant responses from the second attempt, learning that the conditioned stimulus was a predictor of food presentation in a specific space of the tank, where the food was dumped. When the fish were subjected to two stimuli for decision-making in the food reward, the zebrafish obtained better responses to red light stimuli in relation to vibration. The behavior change was clear in stimulated fish in relation to the control group, thus, the distances traveled and the speed were greater, while the polarization was lower in stimulated fish. This automated system allows for the conditioning and assessment of zebrafish behavior online, with greater stability in experiments, and in the analysis of the behavior of individual fish or fish schools, including learning and memory studies
Appears in Collections:ICe - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ZebrafshAutomaticMonitoring_Ribeiro_2021.pdfZebrafishAutomaticMonitoring_Ribeiro_20217.42 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons