Ulcer Segmentation and Tissue Classification using Color Texture Clustering

dc.contributor.advisorCarvalho, Bruno Motta de
dc.contributor.advisor-co1Bruno Santana da Silvapt_BR
dc.contributor.authorMarques, Vítor de Godeiro
dc.contributor.referees1Canuto, Anne Magaly de Paula
dc.contributor.referees2Santos, Selan Rodrigues dos
dc.date.accessioned2018-12-07T19:42:11Z
dc.date.accessioned2021-09-20T11:47:02Z
dc.date.available2018-12-07T19:42:11Z
dc.date.available2021-09-20T11:47:02Z
dc.date.issued2018-11-23
dc.description.resumoChronic Wounds are ulcers presenting a difficult or nearly interrupted cicatrization process that increases the risk of complications to the health of patients, like amputations and infections. This research proposes a general noninvasive methodology for the segmentation and analysis of images of chronic wounds by computing the wound areas affected by necrosis, as opposed to invasive techniques that are commonly used for this calculation, such as manual planimetry with plastic films. We investigated algorithms to perform the segmentation of wounds and classification of tissues as Necrotic, Granulation or Slough. In the proposed methodology, we used histogram based textural descriptions, that were compared by using the Earth Mover's Distance, and proposed a color space reduction methodology that increased the reported accuracies, specificities, sensitivities and Dice coefficients. We also developed a mobile app prototype to show that it is possible to employ such application for supporting Larval Therapy on mobile devices.pt_BR
dc.identifier20180008316pt_BR
dc.identifier.citationMarques, Vítor de Godeiro. Ulcer segmentation and tissue classification using color texture clustering. 85f. Monografia (Bacharelado em Ciência da Computação) - Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte. Natal, 2018.pt_BR
dc.identifier.urihttps://repositorio.ufrn.br/handle/123456789/34203
dc.languageenpt_BR
dc.publisherUniversidade Federal do Rio Grande do Nortept_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCiência da Computaçãopt_BR
dc.publisher.initialsUFRNpt_BR
dc.subjectLarval therapypt_BR
dc.subjectChronic woundspt_BR
dc.subjectImage segmentationpt_BR
dc.subjectTissue classificationpt_BR
dc.subjectColor image analysispt_BR
dc.subjectClusteringpt_BR
dc.titleUlcer Segmentation and Tissue Classification using Color Texture Clusteringpt_BR
dc.typebachelorThesispt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
UlcerSegmentationClassification_Marques_2018.pdf
Tamanho:
26.09 MB
Formato:
Adobe Portable Document Format
Nenhuma Miniatura disponível
Baixar

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Plain Text
Nenhuma Miniatura disponível
Baixar