Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/jspui/handle/123456789/23950
Título: Sistema especialista baseado em regras ponderado por tendências aplicado ao monitoramento de processos industriais
Autor(es): Souza, Danilo Curvelo de
Palavras-chave: Sistema especialista;Análise qualitativa de tendências;Monitoramento de processos;Automação inteligente;Tennessee eastman
Data do documento: 23-Jun-2017
Citação: SOUZA, Danilo Curvelo de. Sistema especialista baseado em regras ponderado por tendências aplicado ao monitoramento de processos industriais. 2017. 100f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2017.
metadata.dc.description.resumo: A presente tese apresenta uma técnica inovadora — designada como sistema especialista baseado em regras ponderado por tendências (SEBRPT) — fundamentada na integração de duas ferramentas existentes na área de inteligência artificial, os sistemas especialistas (SE) e a análise qualitativa de tendências (QTA). Um dos objetivos desta abordagem é usufruir das principais vantagens associadas a cada uma das ferramentas utilizadas, tais como a facilidade de se representar o conhecimento através de regras e a capacidade de extrair o comportamento e as tendências de um sinal contínuo. Esta metodologia também permite preencher uma lacuna entre métodos puramente baseado em números (quantitativos) e métodos puramente simbólicos (qualitativos), permitindo assim uma obtenção de resultados a partir de um processo de inferência baseado tanto nos valores exatos como nas tendências de um determinado sinal. Dessa forma, a técnica abordada possibilita a extração de um "fator de certeza" associado a uma regra previamente modelada por um especialista, descartando assim a lógica puramente booleana (verdadeiro/falso) adotada nos sistemas especialistas clássicos. O método proposto permite uma adoção direta em ambientes industriais, especialmente na área de automação inteligente. Seus principais recursos e características, com aplicação no monitoramento de processos industriais, serão demonstrados por simulações e resultados experimentais baseados no benchmark conhecido como o processo de Tennessee Eastman.
URI: https://repositorio.ufrn.br/jspui/handle/123456789/23950
Aparece nas coleções:PPGEE - Doutorado em Engenharia Elétrica e de Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DaniloCurveloDeSouza_TESE.pdf2,23 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.